Machine Learning (2019) 108:1443-1466
https://doi.org/10.1007/510994-019-05807-0

®

Check for
updates

Compatible natural gradient policy search

Joni Pajarinen™*@® - Hong Linh Thai' - Riad Akrour’ - Jan Peters'- .
Gerhard Neumann3

Received: 21 January 2019 / Accepted: 2 May 2019 / Published online: 20 May 2019
© The Author(s) 2019

Abstract

Trust-region methods have yielded state-of-the-art results in policy search. A common
approach is to use KL-divergence to bound the region of trust resulting in a natural gra-
dient policy update. We show that the natural gradient and trust region optimization are
equivalent if we use the natural parameterization of a standard exponential policy distribu-
tion in combination with compatible value function approximation. Moreover, we show that
standard natural gradient updates may reduce the entropy of the policy according to a wrong
schedule leading to premature convergence. To control entropy reduction we introduce a
new policy search method called compatible policy search (COPOS) which bounds entropy
loss. The experimental results show that COPOS yields state-of-the-art results in challenging
continuous control tasks and in discrete partially observable tasks.

Keywords Reinforcement learning - Policy search

1 Introduction

The natural gradient (Amari 1998) is an integral part of many reinforcement learning (Kakade
2001; Bagnell and Schneider 2003; Peters and Schaal 2008; Geist and Pietquin 2010) and
optimization (Wierstra et al. 2008) algorithms. Due to the natural gradient, gradient updates
become invariant to affine transformations of the parameter space and the natural gradient is
also often used to define a trust-region for the policy update. The trust-region is defined by
a bound of the Kullback—Leibler (KL) (Peters et al. 2010; Schulman et al. 2015) divergence
between new and old policy and it is well known that the Fisher information matrix, used to
compute the natural gradient is a second order approximation of the KL divergence. Such

Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, Antti Ukkonen.

B Joni Pajarinen

pajarinen @ias.tu-darmstadt.de

Intelligent Autonomous Systems, TU Darmstadt, Darmstadt, Germany

MPI for Intelligent Systems, Tuebingen, Germany

Lincoln Center for Autonomous Systems, University of Lincoln, Lincoln, UK

Tampere University, Tampere, Finland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05807-0&domain=pdf
http://orcid.org/0000-0003-4469-8191

1444 Machine Learning (2019) 108:1443-1466

trust-region optimization is common in policy search and has been successfully used to
optimize neural network policies.

However, many properties of the natural gradient are still under-explored, such as compat-
ible value function approximation (Sutton et al. 1999) for neural networks, the approximation
quality of the KL-divergence and the online performance of the natural gradient. We analyze
the convergence of the natural gradient analytically and empirically and show that the natural
gradient does not give fast convergence properties if we do not add an entropy regularization
term. This entropy regularization term results in a new update rule which ensures that the
policy looses entropy at the correct pace, leading to convergence to a good policy. We further
show that the natural gradient is the optimal (and not the approximate) solution to a trust
region optimization problem for log-linear models if the natural parameters of the distribution
are optimized and we use compatible value function approximation.

We analyze compatible value function approximation for neural networks and show that
the components of this approximation are composed of two terms, a state value function which
is subtracted from a state-action value function. While it is well known that the compatible
function approximation denotes an advantage function, the exact structure was unclear. We
show that using compatible value function approximation, we can derive similar algorithms
to Trust Region Policy Search that obtain the policy update in closed form. A summary of
our contributions is as follows:

— Itis well known that the second-order Taylor approximation to trust-region optimization
with a KL-divergence bound leads to an update direction identical to the natural gradient.
However, what is not known is that when using the natural parameterization for an
exponential policy and using compatible features we can compute the step-size for the
natural gradient that solves the trust-region update exactly for the log-linear parameters.

— When using an entropy bound in addition to the common KL-divergence bound, the
compatible features allow us to compute the exact update for the trust-region problem in
the log-linear case and for a state independent covariance also in the non-linear case.

— Our new algorithm called Compatible Policy Search (COPOS), based on the above
insights, outperforms comparison methods in both continuous control and partially
observable discrete action experiments due to entropy control allowing for principled
exploration.

2 Preliminaries

This section discusses background information needed to understand our compatible policy
search approach. We first go into Markov decision process (MDP) basics and introduce the
optimization objective. We continue by showing how trust region methods can help with
challenges in updating the policy by using a KL-divergence bound, continue with the classic
policy gradient update, introduce the natural gradient and the connection to the KL-divergence
bound. Moreover, we introduce the compatible value function approximation and connect
it to the natural gradient. Finally, this section concludes by showing how the optimization
problem resulting from using an entropy bound to control exploration can be solved.
Following standard notation, we denote an infinite-horizon discounted Markov decision
process (MDP) by the tuple (S, A, p, r, po, ¥), where S is a finite set of states and A is a
finite set of actions. p(s;+1]s;, a;) denotes the probability of moving from state s; to s;41
when the agent executes action a, at time step . We assume p(s;+1]s¢, @) is stationary and
unknown but that we can sample from p(s;+1|s;, a;) either in simulation or from a physical

@ Springer

Machine Learning (2019) 108:1443-1466 1445

system. po(s) denotes the initial state distribution, y € (0, 1) the discount factor, and r (s;, a;)
denotes the real valued reward in state s; when agent executes action ;. The goal is to find a
stationary policy m(a;|s;) that maximizes the expected reward Eg 4, ... [Z?io yir (s, at)],
where so ~ po(s), Sr+1 ~ p(Si+1lsr, a;) and a; ~ m(as|s;). In the following we will use
the notation for the continuous case, where S and A denote finite dimensional real valued
vector spaces and s denotes the real-valued state vector and a the real-valued action vector.
For discrete states and actions integrals can be replaced in the following by sums.
The expected reward can be defined as (Schulman et al. 2015)

J(m) = // px(s)7(als) Q™ (s, a)dsda,)]
where p (s) denotes a (discounted) state distribution induced by policy 7 and

0" (s, a;) = ES;+],H;+],... [Z?io Vt”(st, az)] s
V() = Bap s, [a0 ¥'r(sisan)] A7 (si,a) = O (s4, @) — V™ (s1)

denote the state-action value function Q7 (s;, a;), value function V™ (s;), and advantage
function A™ (s;, a;).

The goal in policy search is to find a policy 7 (a|s) that maximizes Eq. (1). Usually, policy
search computes in each iteration a new improved policy 7 based on samples generated using
the old policy g since maximizing Eq. (1) directly is too challenging. However, since the
estimates for p (s) and Q7 (s, a) are based on the old policy, that is, px,,(s) and Q™ (s, a)
are actually used in Eq. (1), they may not be valid for the new policy. A solution to this is to
use Trust-Region Optimization methods which keep the new policy sufficiently close to the
old policy. Trust-Region Optimization for policy search was first introduced in the relative
entropy policy search (REPS) algorithm (Peters et al. 2010). Many variants of this algorithm
exist (Akrour et al. 2016; Abdolmaleki et al. 2015; Daniel et al. 2016; Akrour et al. 2018).
All these algorithms use a bound for the KL-divergence of the policy update which prevents
the policy update from being unstable as the new policy will not go too far away from areas
it has not seen before. Moreover, the bound prevents the policy from being too greedy. Trust
region policy optimization (TRPO) (Schulman et al. 2015) uses this bound to optimize neural
network policies. The policy update can be formulated as finding a policy that maximizes
the objective in Eq. (1) under the KL-constraint:

alrgInaX]TIEpﬂo]d () [/ 7 (als) Q™ (s, a)da] Q)

st Ep, o [KL(CI9) o (19))] < e, 3)

where Q74 (s, a) denotes the future accumulated reward values of the old policy 7o1d, Pryq (5)
the (discounted) state distribution under the old policy, and € is a constant hyper-parameter.
For an € small enough the state-value and state distribution estimates generated using the old
policy are valid also for the new policy since the new and old policy are sufficiently close to
each other.

Policy gradient We consider parameterized policies g (a|s) with parameter vector . A
policy can be improved by modifying the policy parameters in the direction of the policy
gradient which is computed w.r.t. Eq. (1). The “vanilla” policy gradient (Williams 1992;
Sutton et al. 1999) obtained by the likelihood ratio trick is given by

@ Springer

1446 Machine Learning (2019) 108:1443-1466

Vo JpG =// p(s)mg(als)Vlogmg(als) Q" (s, a)dsda

~ Y Viogmg(ailsi) Q™ (si, a;).
i

The Q-values can be computed by Monte-Carlo estimates (high variance), that is,
QT (s, a,) ~ ZZO:O ¥"ri4, or estimated by policy evaluation techniques (typically high
bias). We can further subtract a state-dependent baseline V (s) which decreases the variance
of the gradient estimate while leaving it unbiased, that is,

VoJeg ~ Y Vlogm(ailsi)(Q7 (si, i) — V(si).

1

Natural gradient Contrary to the “vanilla” policy gradient, the natural gradient (Amari
1998) method uses the steepest descent direction in a Riemannian manifold, so it is effective in
learning, avoiding plateaus. The natural gradient can be obtained by using a second order Tay-
lor approximation for the KL divergence, that is, E () [KL(g1e (:9)[|7 (1s))] ~ &' Fe,
where F is the Fisher information matrix (Amari 1998). The natural gradient is now defined
as the update direction that is most correlated with the standard policy gradient and has a
limited approximate KL, that is,

Vo IJNaC = argmaxaaTVg Jpg s.t. ol Fa <e€

resulting in
Vo Jnac ="' F ™'V Jpa,

where 7 is a Lagrange multiplier.

Compatible value function approximation It is well known that we can obtain an unbi-
ased gradient with typically smaller variance if compatible value function approximation
is used (Sutton et al. 1999). An approximation of the Monte-Carlo estimates Gj,f,"ld (s,a) =
& (s, a)T w is compatible to the policy g (a|s), if the features ¢ (s, a) are given by the log gra-
dients of the policy, that is, ¢ (s, @) = Vg log g (a|s). The parameter w of the approximation
Gj,f,‘”d (s, @) is the solution of the least squares problem

2
w* = argminy, E,(s)mals) |:(Q”°“‘(s, a) — ¢(s, a)Tw>] .

Peters and Schaal (2008) showed that in the case of compatible value function approximation,
the inverse of the Fisher information matrix cancels with the matrix spanned by the compatible
features and, hence, Vg Jnac = 1 ~lw*. Another interesting observation is that the compatible
value function approximation is in fact not an approximation for the Q-function but for the
advantage function A7l (s, @) = Q7 (s, @) — V™l (5) as the compatible features are always
zero mean. In Sect. 3, we show how with compatible value function approximation the natural
gradient directly gives us an exact solution to the trust region optimization problem instead of
requiring a search for the update step size to satisfy the KL-divergence bound in trust region
optimization.

Entropy regularization Recently, some approaches (Abdolmaleki et al. 2015; Akrour
et al. 2016; Mnih et al. 2016; O’Donoghue et al. 2016) use an additional bound for the
entropy of the resulting policy. The entropy bound can be beneficial since it allows to limit
the change in exploration potentially preventing greedy policy convergence. The trust region
problem is in this case given by

@ Springer

Machine Learning (2019) 108:1443-1466 1447

argmax,,IEpold(s)[/n(als)Q”"‘d(s,a)da]

st Epya [KL(7CI9) 1701 (1s))] < €
Epoats) [H (wo1a(-1s)) — H((-|s)] < B, 4)

where the second constraint limits the expected loss in entropy (H () denotes Shannon entropy
in the discrete case and differential entropy in the continuous case) for the new distribution
[applying an entropy constraint only on m(a|s) but adjusting B8 according to mgq(als) is
equivalent in (Akrour et al. 2016, 2018)]. The policy update rule can be formed for the
constrained optimization problem by using the method of Lagrange multipliers:

Q”old (S, a))

n+w)

w(als) x ﬂold(a|s)ﬂ% exp (
where 1 and w are Lagrange multipliers (Akrour et al. 2016). 7 is associated with the KL-
divergence bound € and w is related to the entropy bound S. Note that, for @ = 0, the entropy
bound is not active and therefore, the solution is equivalent to the standard trust region solu-
tion. It has been realized that the entropy bound is needed to prevent premature convergence
issues connected with the natural gradient. We show that these premature convergence issues
are inherent to the natural gradient as it always reduces entropy of the distribution. In contrast,
entropy control can prevent this.

3 Compatible policy search with natural parameters

In this section, we analyze the natural gradient update equations for exponential family
distributions. This analysis reveals an important connection between the natural gradient
and the trust region optimization: Both are equivalent if we use the natural parameterization
of the distribution in combination with compatible value function approximation. This is
an important insight as the natural gradient now provides the optimal solution for a given
trust region, not just an approximation which is commonly believed: for example, Schulman
et al. (2015) have to use line search to fit the natural gradient update to the KL-divergence
bound. Moreover, this insight can be applied together with the entropy bound to control
policy exploration and get a closed form update in the case of compatible log-linear policies.
Furthermore, the use of compatible value function approximation has several advantages in
terms of variance reduction which can not be achieved with the plain Monte-Carlo estimates
which we leave for future work. We also present an analysis of the online performance of
the natural gradient and show that entropy regularization can converge exponentially faster.
Finally, we present our new algorithm for Compatible Policy Search (COPOS) which uses
the insights above.

3.1 Equivalence of natural gradients and trust region optimization

We first consider soft-max distributions that are log-linear in the parameters (for example,
Gaussian distributions or the Boltzmann distribution) and subsequently extend our results
to non-linear soft-max distributions, for example given by neural networks. A log-linear
soft-max distribution can be represented as

exp (W(s,a)TO)
Jexp(¥(s,a)70)da’

w(als) =

@ Springer

1448 Machine Learning (2019) 108:1443-1466

Note that also Gaussian distributions can be represented this way [see, for example, Eq. (9)],
however, the natural parameterization is commonly not used for Gaussian distributions. Typ-
ically, the Gaussian is parameterized by the mean u and the covariance matrix X. However,
the natural parameterization and our analysis suggest that the precision matrix B = X!
and the linear vector b = ¥~ ! should be used to benefit from many beneficial properties
of the natural gradient.

It makes sense to study the exact form of the compatible approximation for these log-linear
models. The compatible features are given by

¢(s.a) = Vg logmg(als) = ¥(s.a) — Ex(j5) [¥(s.)]

As we can see, the compatible feature space is always zero mean, which is inline with
the observation that the compatible approximation G.2(s, a) is an advantage function.
Moreover, the structure of the features suggests that the advantage function is composed
of a term for the Q-function Qw(s, a) = Y(s,)T w and for the value function Vw (s) =

Ex () [Qw(s, a)], that is,
G (s,a) = ¥ (s,a) w — By [,/,(s’ .)Twil

We can now directly use the compatible advantage function G2 (s, @) in our trust region
optimization problem given in Eq. (3). The resulting policy is then given by

V(s.a) w—Eqq5) [¥(s, -)Tw])
n

w(als) < moa(als) exp (

ocexp (¥ (s, @) (Boa + 1" w)).

Note that the value function part of G, does not influence the updated policy. Hence, if we
use the natural parameterization of the distributions in combination with compatible function
approximation, then we directly get a parametric update of the form

0 =00+ 'w. (©6)

Furthermore, the suggested update is equivalent to the natural gradient update: The natural
gradient is the optimal solution for a given trust region problem and not just an approx-
imation. However, this statement only holds if we use natural parameters and compatible
value function approximation. Moreover, the update needs only the Q-function part of the
compatible function approximation.

We can do a similar analysis for the optimization problem with entropy regularization
given in Eq. (4) using Eq. (5). The optimal policy given the compatible value function
approximation is now given by

0 0
m(als) o exp (W(s, a)T <w>> , yielding 0 = w. 7
n+ow n+o

In comparison to the standard natural gradient, the influence of the old parameter vector is
diminished by the factor n/(n + @) which will play an important role for our further analysis.

3.2 Compatible approximation for neural networks

So far, we have only considered models that are log-linear in the parameters (ignoring the
normalization constant). For more complex models, we need to introduce non-linear param-

@ Springer

Machine Learning (2019) 108:1443-1466 1449

eters B for the feature vector, that is, ¥ (s,a) = ¢ ﬂ(s, a). We are in particular interested in
Gaussian policies in the continuous case and softmax policies in the discrete case as they
are the standard for continuous and discrete actions, respectively. In the continuous case, we
could either use a Gaussian with a constant variance where the mean is parameterized by a
neural network, a non-linear interpolation linear feedback controllers with Gaussian noise
or also Gaussians with state-dependent variance. For simplicity, we will focus on Gaussians
with a constant covariance ¥ where the mean is a product of neural network (or any other
non-linear function) features ¢; (s) and a mixing matrix K that could be part of the neural
network output layer. The policy and the log policy are then

(als) = N (a > ei9)ki, z) ®)
i
logm(als) = —O.S(p(s)TKTE’lK(p(s) + ¢(s)TKTE*1a —0.5a" X7 'a + const
= —0.5¢() UKo(s) + ¢(s) Ua — 0.5a” ¥'a + const,)

where K = (ky,...,ky)andU = KT X~ !. To compute ¥ (s, @) we note that

¢(s,a) = Vg logmg(als) =¥ (s,a) — Eq(p5) [¥ (s,)]

To get ¥ (s, @) we note that some parts of Eq. (9) and thus of Vg log 79 (als) do not depend
on a. We ignore those parts for computing ¥ (s, @) since ¥ (s, @)@ is the state-action value
function and action independent parts of the state-action value function do not influence the
optimal action choice. Thus we get

V(s a) =V <<p(s)TUa - 0.5aTz*1a) . (10)

We then take the gradient w.r.t. the log-linear parameters § = (X!, U) resulting in
Vy-1logn(als) = —0.5aa”, Vylogr(als) = ap(s)”, and ¥ (s, a) = [—vec[0.5aa”],
vec[mp(s)T]]T, where vec[-] concatenates matrix columns into a column vector.

Note that the variances and the linear parameters of the mean are contained in the parameter
vector @ and can be updated by the update rule in Eq. (7) explained above. However, for
obtaining the update rules for the non-linear parameters 8, we first have to compute the
compatible basis, that is,

Vglogmg g(als) = Bwﬂ(s, a)/op — Eﬂ(.‘s)[avﬁﬂ(s,)6 /9B]. (11)

Note that due to the log operator the derivative is linear w.r.t. log-linear parameters 6. For the
Gaussian distribution in Eq. (8) the gradient of the action dependent parts of the log policy
in Eq. (11) become

3
IV g(s.a)0/dp = ﬁgo(s)TUa.

Now, in order to find the update rule for the non-linear parameters we will write the update

rule for the policy using Eq. (5), and, using the value function formed by multiplying the
compatible basis in Eq. (11) by wg which is the part of the compatible approximation vector

@ Springer

1450 Machine Learning (2019) 108:1443-1466

Algorithm 1 Compatible Policy Search (COPOS).

Initialize ()
for i = 1 to max episodes do
Sample (s, a, r) tuples using 7; _|
Estimate advantage function A;_, (s, @) from samples
Solve w = F~'VJpg(m;)
Use compatible value function to solve Lagrange multipliers n and o for Eq. (4)
Update 7r; using w, n and w based on Eqgs. (7) and (16)
end for

that is responsible for B:

78,0(als) 0 74,104 @l)") exp ((Vg ¥ g, (5. @Bota) wp

— Excls) [(Vﬂold '/’ﬂold (s, aw(ﬂd)] wﬁ) (12)
s,a)0 Vv s, a)0oq)w
x exp <Wﬂld()°‘d> exp< Buia (¥ 8y 8- @)0old) ﬁ) (13)
n+w n+o
. (nwﬂo,d(s, a)foia + Vg, (¥g (s, a)ﬂold)wﬁ)
= exp (= (¥, (5. @) + Vi (W, (5. 0w /1) Baia) (14)
n +w ﬂold ? old Bold ?
U

A exp <mwﬂold+wﬂ/” (s, a)001d> , (15)

where we dropped action independent parts, which can be seen as part of the distribution
normalization, from Eq. (12) to Eq. (13). Note that Eq. (15) represents the first order Taylor
approximation of Eq. (14) at wg/n = 0. Moreover, note that rescaling of the energy function
¥ 3(s, @)f is implemented by the update of the parameters # and hence can often be ignored
for the update for B. The approximate update rule for B is thus

B =Boa+wg/n. (16)

Hence, we can conclude that the natural gradient is an approximate trust region solution for
the non-linear parameters # as the first order Taylor approximation of the energy function is
replaced by the real energy function after the update. Still, for the parameters @, which in the
end dominate the mean and covariance of the policy, the natural gradient is the exact trust
region solution.

3.3 Compatible value function approximation in practice

Algorithm 1 shows the Compatible Policy Search (COPOS) approach (see Appendix B for a
more detailed description of the discrete action algorithm version). In COPOS, for the policy
updates in Egs. (7) and (16), we need to find w, 1, and w. For estimating w we could use
the compatible function approximation. In this paper, we do not estimate the value function
explicitly but instead estimate w as a natural gradient using the conjugate gradient method
which removes the need for computing the inverse of the Fisher information matrix explicitly
[see for example Schulman et al. 2015]. As discussed before 1 and w are Lagrange multipliers
associated with the KL-divergence and entropy bounds. In the log-linear case with compatible
natural parameters, we can compute them exactly using the dual of the optimization objective

@ Springer

Machine Learning (2019) 108:1443-1466 1451

Eq. (4) and in the non-linear case approximately. In the continuous action case, the basic dual
includes integration over both actions and states but we can integrate over actions in closed
form due to the compatible value function: we can eliminate terms which do not depend
on the action. The dual resolves into an integral over just states allowing computing 1 and
o efficiently. Please, see “Appendix A” for more details. Since 1 is an approximation for
the non-linear parameters, we performed in the experiments for the continuous action case
an additional alternating optimization twice: (1) we did a binary search to satisfy the KL-
divergence bound while keeping w fixed, (2) we re-optimized w (exactly, since @ depends only
on log-linear parameters) keeping n fixed. For discrete actions it was sufficient to perform
only an additional line search to update the non-linear parameters.

4 Analysis and illustration of the update rules

We will now analyze the performance of both update rules, with and without entropy, in more
detail with a simple stateless Gaussian policy 7 (a) o exp(—0.5Ba? + ba) for a scalar action
a. Ourreal reward function R (a) = —0.5Ra%+ra is also quadratic in the actions. We assume
an infinite number of samples to perfectly estimate the compatlble function approximation.
In this case Gy is glven by Gw(a) = R(a) = —0.5Ra® + ra and w = [R, r]. The reward
function maximum is a* = R~

Natural gradients For now, we will analyze the performance of the natural gradient if 7 is
a constant and not optimized for a given KL-bound. After n update steps, the parameters of
the policy are given by B,, = By + nR/n, b, = bg + nr/n. The distance between the mean
Un = B, Ib,, of the policy and the optimal solution a* is

boR — r B,
dn:ﬂn_a*zoiw:%&).
R(Bo+nR/n) c1 + con

We can see that the learned solution approaches the optimal solution, however, very slowly
and heavily depending on the precision By of the initial solution. The reason for this effect
can be explained by the update rule of the precision. As we can see, the precision B, is
increased at every update step. This shrinking variance in turn decreases the step-size for the
next update.

Entropy regularization Here we provide the derivation of d,, for the entropy regularization
case. We perform a similar analysis for the entropy regularization update rule. We start with
constant parameters 1 and w and later consider the case with the trust region. The distance
d, = un, — a™ is again a function of n. The updates for the entropy regularization result in
the following parameters after n iterations

n

_p N _ont _n_
B"_BO(ner)”JrR/n(l (n+w)”>/<1 n+w)’

A o __n
b”_bo(nw)"”/”(l (n+w)”>/(1 n+w)'

The distance d,, = i1, — a™ can again be expressed as a function of n:
bo —rBg/R co
dy = n/pn / :0(n) an
Bo + R((n +)" /0" = D(n +)/ (nw) crt+a;

with ¢; > 1. Hence, also this update rule converges to the correct solution but contrary to the
natural gradient, the part of the denominator that depends on n grows exponentially. As the

@ Springer

1452 Machine Learning (2019) 108:1443-1466

0 0
2
2
w
—10!

Reward

KL divergence
o °
o o
o [,

Distance

o]
0 100 200 0 100 200 0 100 200 0 100 200
02 0 0.0| go.oou
>
g I g2-0.5 $0.004]
81 z -5 = @
7 3 2-1.0 >0.002
=) o« w S
ol -10 -15 2 0.000
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 ¥ 0 50 100 150 200

Fig. 1 Comparison of different update rules with and without entropy regularization in the toy example of
Sect. 4. The figures show the “Distance” between optimal and current policy mean [see Eq. (17)], the expected
“Reward”, the expected “Entropy”, and the expected “KL-divergence” between previous and current policy
over 200 iterations (x-axis). Top: Policy updates with constant learning rates and no trust region. Comparison
of the natural gradient (blue), natural gradient with entropy regularization (green) and vanilla policy gradient
(red). Bottom Policy updates with trust region. Comparison of the natural gradient (blue), natural gradient
where the entropy is controlled to a set-value (green), natural gradient with zero entropy loss (cyan) and vanilla
policy gradient (red). To summarize, without entropy regularization the natural gradient decreases the entropy
too fast (Color figure online)

old parameter vector is always multiplied by a factor smaller than one, the influence of the
initial precision matrix By vanishes while By dominates natural gradient convergence. While
the natural gradient always decreases variance, entropy regularization avoids the entropy loss
and can even increase variance.

Empirical evaluation of constant updates We plotted the behavior of the algorithms, and
standard policy gradient, for this simple toy task in Fig. 1 (top). We use n = 10 and w = 1
for the natural gradient and the entropy regularization and a learning rate of &« = 1000 for
the policy gradient. We estimate the standard policy gradients from 1000 samples. Entropy
regularization performs favorably speeding up learning in the beginning by increasing the
entropy. With constant parameters 1 and w, the algorithm drives the entropy to a given target-
value. The policy gradient performs better than the natural gradient as it does not reduce the
variance all the time and even increases the variance. However, the KL-divergence of the
standard policy gradient appears uncontrolled.

Empirical evaluation of trust region updates In the trust region case, we minimized the
Lagrange dual at each iteration yielding n and w. We chose at each iteration the highest policy
gradient learning rate where the KL-bound was still met. For entropy regularization we tested
two setups: (1) We fixed the entropy of the policy (that is, ¥ = 0), (2) The entropy of the
policy was slowly driven to 0. Figure 1 (bottom) shows the results. The natural gradient still
suffers from slow convergence due to decreasing the entropy of the policy gradually. The
standard gradient again performs better as it increases the entropy outperforming even the
zero entropy loss natural gradient. For entropy control, even more sophisticated scheduling
could be used such as the step-size control of CMA-ES (Hansen and Ostermeier 2001) as a
heuristic that works well.

5 Related work

Similar to classical reinforcement learning the leading contenders in deep reinforcement
learning can be divided into value based-function methods such as Q-learning with deep
Q-Network (DQN) (Mnih et al. 2015), actor-critic methods (Wu et al. 2017; Tangkaratt et al.
2018; Abdolmaleki et al. 2018), policy gradient methods such as deep deterministic policy
gradient (DDPG) (Silver et al. 2014; Lillicrap et al. 2015) and policy search methods based

@ Springer

Machine Learning (2019) 108:1443-1466 1453

on information theoretic/trust region methods, such as proximal policy optimization (PPO)
(Schulman et al. 2017) and trust region policy optimization (TRPO) (Schulman et al. 2015).

Trust region optimization was introduced in the relative entropy policy search (REPS)
method (Peters et al. 2010). TRPO and TNPG (Schulman et al. 2015) are the first methods
to apply trust region optimization successfully to neural networks. In contrast to TRPO and
TNPG, we derive our method from the compatible value function approximation perspective.
TRPO and TNPG differ from our approach, in that they do not use an entropy constraint and
do not consider the difference between the log-linear and non-linear parameters for their
update. On the technical level, compared to TRPO, we can update the log-linear parameters
(output layer of neural network and the covariance) with an exact update step while TRPO
does a line search to find the update step. Moreover, for the covariance we can find an exact
update to enforce a specific entropy and thus control exploration while TRPO does not bound
the entropy, only the KL-divergence. PPO also applies an adaptive KL penalty term.

Kakade (2001); Bagnell and Schneider (2003); Peters and Schaal (2008); Geist and
Pietquin (2010) have also suggested similar update rules based on the natural gradient for the
policy gradient framework. Wu et al. (2017) applied approximate natural gradient updates
to both the actor and critic in an actor-critic framework but did not utilize compatible value
functions or an entropy bound. Peters and Schaal (2008); Geist and Pietquin (2010) investi-
gated the idea of compatible value functions in combination with the natural gradient but used
manual learning rates instead of trust region optimization. The approaches in (Abdolmaleki
et al. 2015; Akrour et al. 2016) use an entropy bound similar to ours. However, the approach
in (Abdolmaleki et al. 2015) is a stochastic search method, that is, it ignores sequential deci-
sions and views the problem as black-box optimization, and the approach in (Akrour et al.
2016) is restricted to trajectory optimization. Moreover, both of these approaches do not
explicitly handle non-linear parameters such as those found in neural networks. The entropy
bound used in (Tangkaratt et al. 2018) is similar to ours, however, their method depends on
second order approximations of a deep Q-function, resulting in a much more complex policy
update that can suffer from the instabilities of learning a non-linear Q-function.

For exploration one can in general add an entropy term to the objective. In the experiments,
we compare against TRPO with this additive entropy term. In preliminary experiments, to
control entropy in TRPO, we also combined the entropy and KL-divergence constraints into
a single constraint without success.

6 Experiments

In the experiments, we focused on investigating the following research question: Does the
proposed entropy regularization approach help to improve performance compared to other
methods which do not control the entropy explicitly? For selecting comparison methods we
followed (Duan et al. 2016) and took four gradient based methods: Trust Region Policy
Optimization (TRPO) (Schulman et al. 2015), Truncated Natural Policy Gradient (Duan
etal. 2016; Schulman et al. 2015), REINFORCE (VPG) (Williams 1992), Reward-Weighted
Regression (RWR) (Kober and Peters 2009) and two gradient-free black box optimization
methods: Cross Entropy Method (CEM) (Rubinstein 1999), Covariance Matrix Adaption
Evolution Strategy (CMA-ES) (Hansen and Ostermeier 2001). We used rllab ! for algorithm
implementation. We ran experiments in both challenging continuous control tasks and discrete
partially observable tasks which we discuss next.

! http://rllab.readthedocs.io/en/latest/.

@ Springer

http://rllab.readthedocs.io/en/latest/

1454 Machine Learning (2019) 108:1443-1466
—— COPOS B=auto
—— COPOSB=¢
8000 —— TRPO my(als) 0
—— TRPO my(als)
— CEM
£ oo —— VPG L2
2 —— TNPG 2
% — ERWR g
2 - CMAES =
£ 4000 W -4 —— COPOS B=auto
2 —— COPOSB=¢
—— TRPO m(als)
2000 -6 —— TRPO my(als)
— PG
— TNPG
_g — ERWR
o 8
0 2 4 6 8 10 0 2 4 6 8 10
Time steps (M) Time steps (M)
(a) RoboschoollnvertedDoublePendulum-v1
—— COPOS B=auto 4
2500 —— COPOSB=¢
—— TRPO m(als)
—— TRPO my(als) 2
2000 — cgm
£ — VPG
2 — TNPG 20
] 2
1500
E —— ERWR g
g == R -ES & —— COPOS p=auto
% 1000 “2 ___ coPOSB=¢
—— TRPO m(als)
—— TRPO my(als)
-4
500 — VPG
— TNPG
o e — ERWR
0 2 4 6 8 10 0 2 4 6 8 10
Time steps (M) Time steps (M)
(b) RoboschoolHopper-v1
2000 — COPOS B=auto s
—— COPOSB=¢ -
—— TRPO m(als)
—— TRPO ny(als) 5.0
1500 — cgm
€ — VPG 25
2 — TNPG S
2
a — ERWR S oo
21000 __. cmaes 2
5 w —— COPOS B=auto
2 -25 —— COPOSB=¢
—— TRPO my(als)
300 —50 —— TRPO mlals)
— VPG
_75 — TNPG
° — ERWR
0 2 4 6 8 10 0 2 4 6 8 10
Time steps (M) Time steps (M)
(¢) RoboschoolWalker2d-v1
3000 __ copos p=auto
—— COPOSB=¢ 75
2500 —— TRPO m(als)
—— TRPO my(als) 5.0
2000 CEM
€ — VPG 25
2 —— TNPG >
K] 2
T 1500 — ERWR 2 o0
2 ~~- CMA-ES c
5 w —— COPOS B=auto
Z 1000 -25 —— COPOSB=¢
—— TRPO m(als)
-5.0 —— TRPO my(als)
200 — VPG
_75 — TNPG
0 — ERWR
0 2 4 6 8 10 0 2 4 6 8 10

Time steps (M)

Time steps (M)

(d) RoboschoolHalfCheetah-v1

Fig. 2 Average return and differential entropy over 10 random seeds of comparison methods in continuous
Roboschool tasks (see, Fig. 3 for the other continuous tasks and Table 1 for a summary). Shaded area denotes
the bootstrapped 95% CI. Algorithms were executed for 1000 iterations with 10,000 time steps (samples) in
each iteration

@ Springer

Machine Learning (2019)

108:1443-1466

1455

2500 __ copos p=auto
— COPOSB=¢ 10
2000 —— TRPOm(als)
—— TRPO m,(als)
— CEM 5
£ 1500 — VPG
2 —— TNPG >
]
o — ERWR S
2 1000 e
o [—— COPOS B=auto
z —— COPOSB=¢
500 -5 —— TRPO m(als)
—— TRPO my(als)
o — VPG
Pad _10 — TNPG
— ERWR
0 2 4 6 8 10 0 2 4 6 8 10
Time steps (M) Time steps (M)
(a) RoboschoolAnt-v1
10— COPOS B=auto
0 Coposp=e /ﬁ 2
50 — TRPO my(als)
—— TRPO my(als)
o — CEM 10
£ — VPG
2 _so ,— TNPG 2
o f— erwr Troe e T S 4
o i = . ~-r e
B ~100 g CVRES & — COPOS p=auto
2 —— COPOSB=¢
—-150 —-10 — TRPO m(als)
-200 — 3»;;0 m(als)
250 -20 — TNPG
— ERWR
0 2 4 6 8 10 0 2 4 6 8 10
Time steps (M) Time steps (M)
(b) RoboschoolHumanoid-v1
100 copos p=auto —————
—— COPOSB=¢ W 20
50 —— TRPO m(als)
— TRPOm;(als) - e rn s b Wy N
0 — CEM IR 10
£ b PRI A TR TN MUY
2 —— TNPG l ¢ ! . >
v _ o
g —0 I_ ERWR " wm“l’h ft':‘x-qhut_vl” [
> - CMA-ES A 2
o© (| i / w —— COPOS B=auto
3 -100 I [T : AL L
3 'ﬂ'l" ey bk ! — COPOSB=¢
1 -10 — TRPO m(als)
-150 —— TRPO my(als)
— VPG
—200 20 — TNPG
— ERWR
0 2 4 6 8 10 0 2 4 6 8 10
Time steps (M) Time steps (M)
(¢) RoboschoolHumanoidFlagrunHarder-v1
250 —— COPOS B=auto 2
—_——————————
—— COPOSB=¢
—— TRPO m(als)
200 —— TRPO my(als)
— CEM 20
€ — VPG
2150 — TNPG >
o —_—
i1 ERWR g o
8 g
5 w —— COPOS B=auto
¢ 100
z —— COPOSB=¢
_20 —— TRPOm(als)
50 —— TRPO m(a|s)
— VPG
— TNPG
40— ERWR
0
0 2 4 6 8 10 0 2 4 6 8 10

Time steps (M)

Time steps (M)

(d) RoboschoolAtlasForward Walk-v1

Fig. 3 Average return and differential entropy of comparison methods over 10 random seeds in continuous
Roboschool tasks (see, Fig. 2 for the other continuous tasks and Table 1 for a summary). Shaded area denotes
the bootstrapped 95% CI. Algorithms were executed for 1000 iterations with 10, 000 time steps (samples) in

each iteration

@ Springer

1456

Machine Learning (2019) 108:1443-1466

Table 1 Continuous control environments

COPOS B =auto COPOS B=¢ TRPO 71 (als)
RobolnvertedDoublePendulum-v1 7107 £ 416 7722 £235.3 7904 £+ 192.4
RoboHopper-v1 2514 + 35.11 2427 + 47.96 2005 £ 26.04
RoboWalker2d-v1 1878 + 34.59 1906 + 41.48 1518 £93.11
RoboHalfCheetah-v1 2804 + 57.27 2772 +42.23 2341 £+ 16.52
RoboAnt-v1 2335 + 49.69 2375 +26.88 2263 + 48.09
RoboHumanoid-v1 113.85 + 0.94 52.92 +£0.31 64.77 £ 0.38
RoboHumanoidFlagrunHarder-v1 77.72 £+ 4.86 32,14+ 1.34 14.51 £ 1.25
RoboAtlasForwardWalk-v1 238.1 £ 2.08 186.8 +1.18 177.7 £ 0.44

TRPO 75 (als) CMA-ES VPG
RobolnvertedDoublePendulum-v1 8052 +£172.3 4382 +379.2 9020 + 35.10
RoboHopper-v1 2106 + 85.59 25.87 £ 8.66 7514 £ 1454
RoboWalker2d-v1 1223 £ 139.0 82.38 £9.72 559.7 £ 13.55
RoboHalfCheetah-v1 2024 +261.2 13.38 £3.88 918.1 £ 43.57
RoboAnt-v1 2291 + 65.66 Out of memory 1558 £35.71
RoboHumanoid-v1 102.5 £ 2.16 —65.07£1.71 3272 £ 247
RoboHumanoidFlagrunHarder-v1 5.04 +£2.70 —74.62 £3.28 —31.62 £4.59
RoboAtlasForwardWalk-v 1 198.4 £ 1.94 Out of memory 121.5 £ 0.92

CEM TNPG ERWR
RobolnvertedDoublePendulum-v1 2643 £ 628.9 4866 + 1178 6367 £937.4
RoboHopper-v1 346.6 £ 66.89 20.55 £2.42 985.1 £173.1
RoboWalker2d-v1 49.03 £+ 10.69 90.36 £ 35.52 333.3 £47.73
RoboHalfCheetah-v1 11.27 £2.93 72.22 £+ 56.48 747.3 £ 137.8
RoboAnt-v1 25.17 £ 35.09 1102 £ 64.61 982.6 &+ 74.23
RoboHumanoid-v1 —87.19 £4.21 —51.39 £ 1.01 —495+2.16
RoboHumanoidFlagrunHarder-v1 —78.00 £4.74 —0.25+0.68 —24.59 £0.65
RoboAtlasForwardWalk-v1 14.90 £ 0.60 72.96 £2.75 58.54 £ 1.07

Mean of the average return over 50 last iterations & standard error over 10 random seeds. Bold denotes: no
statistically significant difference to the best result (Welch’s t-test with p < 0.05)

Continuous tasks In the continuous case, we ran experiments in eight different
Roboschool 2 environments which provide continuous control tasks of increasing difficulty
and action dimensions without requiring a paid license.

We ran all evaluations, 10 random seeds for each method, for 1000 iterations of 10, 000
samples each. In all problems, we used the Gaussian policy defined in Eq. (8) for COPOS
and TRPO (denoted by 771 (a|s)) with max (10, action dimensions) neural network outputs as
basis functions, a neural network with two hidden layers each containing 32 tanh-neurons,
and a diagonal precision matrix. For TRPO and other methods, except COPOS, we also
evaluated a policy, denoted for TRPO by w5 (als), where the neural network directly specifies
the mean and the diagonal covariance is parameterized with log standard deviations. In the
experiments, we used high identical initial variances (we tried others without success) for all

2 https://github.com/openai/roboschool.

@ Springer

https://github.com/openai/roboschool

Machine Learning (2019) 108:1443-1466 1457

Table 2 Average discounted return on discrete control FVRS instances (fully and partially observable)

COPOS TRPO TRPO ent reg TNPG
5 x 5tull 2.14 +0.08 1.50 4 0.23 1.47 +£0.22 1.43+£0.28
5 x 5 noise 1.94 £+ 0.12 1.24 £0.02 1.24 £0.01 1.24 £0.01
5 x 7 full 2.66 +0.14 1.80 £0.20 1.92+0.17 1.87 £0.16
5 x 7 noise 245+0.10 2.01 £0.02 2.02+0.02 2.01 £0.03
7 x 8 full 1.66 £ 0.17 1.28 +£0.32 1.31£0.20 1.19+£0.26
7 x 8 noise 1.32+0.15 122 +0.28 1.36 £ 0.16 1.18 £ 0.22

Bold denotes: no statistically significant difference to the best result (Welch’s t-test with p < 0.05)

policies. We set € = 0.01 (Schulman et al. 2015) in all experiments. For COPOS we used
two equality entropy constraints: § = € and 8 =auto. In f =auto, we assume positive initial
entropy and schedule the entropy to be the negative initial entropy after 1000 iterations. Since
we always initialize the variances to one, higher dimensional problems have higher initial
entropy. Thus 8 =auto reduces the entropy faster for high dimensional problems effectively
scaling the reduction with dimensionality. Table 1 summarizes the results in continuous tasks:
COPOS outperforms comparison methods in most of the environments. Figures 2 and 3 show
learning curves and performance of COPOS compared to the other methods. COPOS prevents
both too fast, and, too slow entropy reduction while outperforming comparison methods.
Table 4 in “Appendix C” shows additional results for experiments where different constant
entropy bonuses were added to the reward function of TRPO without success highlighting
the necessity of principled entropy control.

Discrete control task Partial observability often requires efficient exploration due to non-
myopic actions yielding long term rewards which is challenging for model-free methods.
The Field Vision Rock Sample (FVRS) (Ross et al. 2008) task is a partially observable
Markov decision process (POMDP) benchmark task. For the discrete action experiments
we used as policy a softmax policy with a fully connected feed forward neural network
consisting of 2 hidden layers with 30 tanh nonlinearities each. The input to the neural network
is the observation history and the current position of the agent in the grid. To obtain the
hyperparameters S, €, and the scaling factor for TRPO with additive entropy regularization,
denoted with “TRPO ent reg”, we performed a grid search on smaller instances of FVRS.
See “Appendix B” for more details about the setup. Results in Table 2 and Fig. 4 show that
COPOS outperforms the comparison methods due to maintaining higher entropy. FVRS has
been used with model-based online POMDP algorithms (Ross et al. 2008) but not with model-
free algorithms. The best model-based results in (Ross et al. 2008) (scaled to correspond to
our rewards, COPOS in parentheses) are 2.275 (1.94) in FVRS(5,5) and 2.34 (2.45) in
FVRS(5,7).

7 Conclusions and future work

We showed that when we use the natural parameterization of a standard exponential policy
distribution in combination with compatible value function approximation, the natural gradi-
ent and trust region optimization are equivalent. Furthermore, we demonstrated that natural
gradient updates may reduce the entropy of the policy according to a schedule which can lead
to premature convergence. To combat the problem of bad entropy scheduling in trust region

@ Springer

1458 Machine Learning (2019) 108:1443-1466

" VPG
e o 14 TNPG ¢ = 0.01
g = TNPG ¢ = 0.005
- e 12 ERWR
E : —— TRPO ¢ = 0.01
& — TRPO € = 0.005
3 1.0 == COPS ¢ = 0.01 8 =0.01
2 > == COPS ¢ =0.005 /= 0.005
S — CEM Sos <o
o 0. ~
S — CMAES 5 oN}
2 VPG e .
=) 0.6 .
g TNPG ¢ = 0.01 ~
© W TNPG € = 0.005 " s
o o A vt ERWR v 04 \\
< | —— TRPO ¢ = 0.01 - S~
— TRPO ¢ = 0.005 02 D S
== COPS e=0.01 8=001 | N e ——— T mmm=——.
—=+ COPS ¢ = 0.005 § = 0.005 0.0
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Time steps (M) Time steps (M)

(a) FVRS (5,7) noisy sensor

AverageDiscountedReturn
o

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Time steps (M) Time steps (M)

(b) FVRS (5,7) full observations

Fig. 4 Average discounted return and Shannon entropy for both FVRS 5 x 7 with a noisy sensor and full
observations over 10 random seeds. Shaded area denotes the bootstrapped 95% CI. Algorithms were executed
for 600 iterations with 5000 time steps (samples) in each iteration

methods we proposed a new compatible policy search method called COPOS that can control
the entropy of the policy using an entropy bound. In both challenging high dimensional con-
tinuous and discrete tasks the approach yielded state-of-the-art results due to better entropy
control. In future work, an exciting direction is to apply efficient approximations to compute
the natural gradient (Bernacchi et al. 2018). Moreover, we have started work on applying
the proposed algorithm in challenging partially observable environments found for example
in autonomous driving where exploration and sample efficiency is crucial for finding high
quality policies (Dosovitskiy et al. 2017).

Acknowledgements This work was supported by EU Horizon 2020 project RoMaNS and ERC StG
SKILLS4ROBOTS, project references #645582 and #640554, and, by German Research Foundation project
PA 3179/1-1 (ROBOLEAP).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Machine Learning (2019) 108:1443-1466 1459

A Solution for the Lagrange multipliers

In order to compute a solution to the optimization objective with a KL-divergence and an
entropy bound, we solve, using the dual of the problem, for the Lagrange multipliers asso-
ciated with the bounds. We first discuss for the continuous action case how we optimize the
multipliers exactly in the case of only log-linear parameters, continue with how we find an
approximate solution in the case of also non-linear parameters, and then discuss the discrete
action case.

A.1 Computing Lagrange multipliers 17 and ® for log-linear parameters

Minimize the dual of the optimization objective (see e.g. Akrour et al. (2016) for a similar
dual)

g, w) =ne —wf+(n+w)

x /ﬁ,(s)log (/n(a|s)"/<’7+w> exp (Qt(s,a)/(n+w)> da) ds (18)

w.r.t. n and w. Note that action independent parts of log (a|s) in Eq. (18) do not have an
effect on the choice of 1 and w and we will discard them.
For a Gaussian policy

w(als) =N (a

p=Ko(s)=) ¢k, 2) (19)

we get

veclap(s)T] w)

5.0 =y = [0]

= —0.5a" W.a + ()" Wy.a (20)
&, w) =ne —wf + (n + o)

x / 51 (s) log < f CI exp (~050/(1+ @)@ - @ -)

exp (—O.SaTW,m/(n +w)a+ o) Wea/()+ w)a) da)ds @1
G0 = ne =0+ (r+0) [5uls)log (f 7

exp (Hiw(—o.mTz—la tulsla— o.suTz—lu))

exp (—O.SaTWaa /(1 + a + o) Wea /(g + a))a) da)ds (22)

gt w) =ne —wf + (n+)
e 1
X /ﬁ,(s)log (/ C exp <7<— O.SaT<nZ_1 + Waa)a
n+o

@ Springer

1460 Machine Learning (2019) 108:1443-1466

+ (n¢(s)TKTE_1 + ga(s)TWw)a - o.an)(s)TKTz—‘Kq;(s)))da)ds
(23)

g,(n,a»=nf—wﬂ+(n+w)/ﬁ,(s>log</ g

1
exp <7 (—O.SaTHaaa + o) Hya — O.Sq)(s)THss(p(s))) da)ds

n+w
24
g(n,) =ne -+ +w)/ﬁ,(S)10g (/ g
exp (#(—0.5(a— H HT ¢(s)" Hoaa — H; HT 0(s))
n+ow
+0.50() Hy H HT, (s) — O.Sq)(s)THssq)(s)))da)ds (25)
g(n, w) =ne —wf + (n+ w)
x [sy tog <exp (- (050 (Bl BT, — Hoo()))
n +a) L aa sa EL
()2 2170975 /(2) 2| (n +) H ;) |—°~5))ds (26)

1
8 (1, ©) = ne — wf + (0 + @) / ﬁ,(s)(mo.sms)T(HmH;; H{, — H;)p(s)

L
n+

—log((2m) 212170 — log(@m) M2 + @) Hy 170)ds. 27)
s =ne—op+ [i) (0500 (HoHGIHT, ~ Ho(s))ds
+ nlog(2m) 21 Z170%) — (1 +) log(@m) | + @) Hy ™), (28)

s.0) = e~ of + [56) (0500 (Ho Bl HY, ~ Ho)p(s))ds

—0.5n1log |27 2| + 0.5(n 4+ w) log 127 (n + w)H)|, (29)
where
H,, = 772_1 + Waa (30)
Hy,=nK"X' + Wy, 31
H,, =nK'>7 'K (32)

and k is the dimensionality of actions. We got the end result by completing the square.

A.2 Computing 77 and @ for non-linear parameters
Similarly to the log-linear parameters we minimize the dual
g (n, @) = ne —wf + (N + w)

@ Springer

Machine Learning (2019) 108:1443-1466 1461

X /ﬁ, (s)log </ n(als)”/(”+“’) exp (Q,(s, a)/(n+ w)) da) ds (33)

w.r.t. 1 and w. As before action independent parts of log w(a|s) in Eq. (18) do not have an
effect on the choice of n and w and we will discard them.
In our Linear Gaussian policy with constant covariance

7 (als) = N (a p=Ko(s) =) ¢i(s)ki, E) : (34)

we have
logm(als) = —0.5(p(s)TUK(p(s) + ¢(s)TUa —0.5a” X7 'a + const, (35)

where const = —/(27)¥| X| and U = KT ¥~!. Therefore,
d T d T
Vg log g g(als) = ﬁfﬂ(s) Ua — ﬁ0-5¢(S) UKo(s), (36)
where we are able to split the equation into action-value and value parts depending on whether
they depend on a. Using the action-value part %(p(s)T Ua to estimate w3 we get

—vec[0.5aa’] g w

Oi(s,a) =Y (s,@) w= | veclap®)'] | |w,
359() Ua w3
=—0.5a"Waea+ o) Wa +wo(s) a, (37)

where w, ()T = w3T %;)TU . By completing the square we get

g, w) =ne —wf +(n+ o)

x /ﬁz(S)IOg (/ C7™” exp (—0~5n/(n +w)a-w'2 a- u))

exp (—0.5aTWaa/(n +o)a+ (@) W +wa()")/(n+ w)a) da)ds (38)

g, w) =ne —wf +(n+ o)

n 1
X /ﬁ,(s)log (/ C exp <7< — O.SaT<nZ’1 + Waa>a
n+o

+ (19 KT E 4+ (0®) Weo + wa9)))a

— 0.5n¢(s)TKT2—‘Kq;(s)))da)ds (39)

qn@) =ne =0+ [516 (050) Hylha(s) ~ hus)ds

—0.571og |27 X'| —I—O.S(n+a))log|2n(n+w)H;a1|, (40)

where
Hy=n2"" 4+ W (41)
ha(s) = o) K" E7" + 0(5)" Wyo + wa(s)” (42)

@ Springer

1462 Machine Learning (2019) 108:1443-1466

hss(s) = np(9) K" £~ Ko(s) (43)
and k is the dimensionality of actions.
A.3 Derivation of the dual for the discrete action case
To derive the dual of our trust region optimization problem with entropy regularization and

discrete actions we start with following program, where we replaced the expectation with
integrals and use the compatible value function for the returns.

argmax;, / p(s) / ng(als) GTN(s, a) da ds
subject to /p(s)/KL (ng(als) [”901(1(“|S)) dads <€
/p(S)/H(no(aIS)) — H (mg,,(als)) dads < B

1 ://p(s)no(als) da ds 44)

Since we are in the discrete action case we will be using sums for the brevity of the derivation,
but the same derivation can be also done with integrals. Using the method of Lagrange
multipliers Boyd and Vandenberghe (2004), we obtain following Lagrange

L(x(als),n, @,) ==Y _ p(s)m(als)Gr(a,s)

[s () |

+ o [Z P($)H (Toa(als)) + Y p(s)m(als) log(r (als)) - ﬂ}

+ A [Z p(s)m(als) — 1} (45)

We differentiate now the Lagrange with respect to 7 (a|s) and obtain following system

~ (als
8x@ls)L = p(s) [—Gﬁ“‘d (s,a) +nlog (¥> +n + wlog(z(als)) + w + A:I .
Told(als)
(46)
Setting it to zero and rearranging terms results in
n_ G (s, a) —n—w—A
w(als) = moa(als) e exp exp 47)
n+w n+o

where the last term can be seen as a normalization constant
- —1
—n—w—A o Ga,s)
exp|l ——— | = wod(als)™e exp | ———= . (48)
P (—) (Xa: ol @l P (e,

@ Springer

Machine Learning (2019) 108:1443-1466 1463

Plugging Eqgs. (47) and (48) into Eq. (45) results in the dual [similar to Akrour et al. (2016)]
used for optimization

L(p, @) =—ne =B+ Y p(s)H(molalals))

s,a

T G;[)old .

B Technical details for discrete action experiments

Here, we provide details on the experiments with discrete actions. Table 3 shows details on the
hyper-parameters used in the Field Vision RockSample (FVRS) experiments and Algorithm 2
describes details on the discrete action algorithm.

Algorithm 2 COPOS discrete actions
Initialize policy network 7y g with non-linear parameters 8 and linear parameters and © = (9,)
for episode «<— 1 to maxEpisode do
Initialize empty batch B
while collected samples < batchsize do
Run policy 7g. ﬂ(a|s) for T timesteps or until termination: Draw action a; ~ g, ﬁ(at |s¢), observe

reward r;
Add samples (s¢, ag, r;) to B
end while
Compute advantage values A™old (s;, a;)
Compute w = (wy, wg) using conjugate gradient to solve
|B]
w=F'"VolpG(e) lo=ay, Veolrc(te) = > Ve logme(ajls;) A™W(s;, a;)

1

Use Gﬁ"ld (s, a) tosolveforn > 0 and w > 0 using the dual to the corresponding trust region optimization
problem:
ar E ~Told d
gmaxy, Esvps) | [molals) G (s, a) da
subject to Egp(s) [KL (g (- | 5) | g1y (- |8))] < €
Egp(s) [H (o (1 9)) — H (w9, (- 19)] < B
Apply updates for the new policy:

n0o1d + wg wg
Onew = ‘:]ﬁ .Bnew = ﬁold +ST

where s is a rescaling factor found by line search

end for

@ Springer

1464

Machine Learning (2019) 108:1443-1466

Table 3 Parameters used for FVRS instances

(5,5)Full (5,5) Noise (5,7) Full (5,7) Noise (7,8) Full (7, 8) Noise
Input space dim. 15 85 17 115 22 134
Output space dim. 5 5 5 5 5 5
Policy parameters 1410 3510 1650 4560 1620 4980
Sim. step per iteration 5000 5000 5000 5000 5000 5000
Total num. of iterations 600 600 600 600 600 600
Discount y 0.95 0.95 0.95 0.95 0.95 0.95
History length 1 15 1 15 1 15
Horizon 25 25 35 35 50 50

C Additional continuous control experiments with a TRPO entropy

bonus

Table 4 shows additional results for continuous control in the Roboschool environment. In
these experiments, an additonal entropy bonus is added to the reward function of TRPO.

Table 4 Additional continuous control environment benchmark runs

COPOS p=auto COPOS 8 =¢ w1, B =0.02 my, B =0.02
RobolnvDblPendulum-v1 7110.0 £416.0 7720.0 +£235.0 8010.0 £ 58.0 6600.0 £+ 330.0
RoboHopper-v1 2510.0 £+ 35.1 2430.0 + 48.0 1370.0 £ 37.1 703.0 £ 50.1
RoboWalker2d-v1 1880.0 £+ 34.6 1910.0 £ 41.5 886.0 +33.3 69.3 £ 1.83
RoboHalfCheetah-v1 2800.0 + 57.3 2770.0 + 42.2 1500.0 £+ 20.9 376.0 £ 42.6
RoboAnt-v1 2330.0 + 49.7 2380.0 + 26.9 1190.0 £ 41.0 614.0 £ 25.0
RoboHumanoid-v1 114.0 + 0.937 52.9 £ 0.306 20.2 £0.515 —729+20
RoboHumanFlagrunHard-vl ~ 77.7 £+ 5.12 32.1+1.34 —121.0+11.3 —554+1.49
RoboAtlasForwardWalk-v1 238.0 £ 2.08 187.0 £ 1.18 108.0 £+ 0.825 739 £ 1.04

w1, B =0.01 m, B =0.01 1, B = 0.005 o, B = 0.005
RobolnvDblPendulum-v1 8030.0 £ 124.0 7630.0 £ 172.0 7730.0 £222.0 7780.0 £ 257.0
RoboHopper-v1 1620.0 + 18.4 1530.0 £71.2 1940.0 £ 29.7 1930.0 £+ 54.0
RoboWalker2d-v1 1140.0 £39.3 757.0 £91.0 1430.0 £25.5 939.0 £ 96.3
RoboHalfCheetah-v1 1840.0 £+ 25.1 1250.0 £ 63.0 2180.0 £ 16.6 2190.0 £+ 67.7
RoboAnt-v1 1930.0 £+ 33.8 1910.0 £ 40.9 2220.0 £ 44.0 2130.0 £ 57.8
RoboHumanoid-v1 46.6 +2.03 56.5 £2.31 59.7£3.99 953 £3.52
RoboHumanFlagrunHard-v1 —58.1+£237 —36.1 £1.96 —2344+1.93 —11.5+1.78
RoboAtlasForwardWalk-v1 122.0 £ 0.692 872+ 1.32 150.0 £ 0.538 136.0 £ 1.72

w1 B =-0.02 m, = —0.02 71, B =—0.01 o, B =—0.01

RobolnvDblPendulum-v1 7760.0 £ 208.0 7670.0 £+ 378.0 7340.0 £ 335.0 7490.0 £ 292.0
RoboHopper-v1 2200.0 £+ 31.6 1800.0 £ 180.0 2130.0 £ 36.8 1950.0 £ 140.0

@ Springer

Machine Learning (2019) 108:1443-1466 1465
Table 4 continued

w1 B =-0.02 s, = —0.02 71, B =—0.01 o, B =—0.01
RoboWalker2d-v1 1340.0 + 148.0 653.0 £47.5 1610.0 £ 106.0 796.0 + 45.0
RoboHalfCheetah-v1 2520.0 £+ 20.9 1140.0 £ 215.0 2470.0 & 40.0 1460.0 4 243.0
RoboAnt-v1 2320.0 + 38.4 1340.0 & 148.0 2270.0 344 1790.0 & 133.0
RoboHumanoid-v1 87.1 +£3.36 98.1 £3.18 77.1 £2.09 106.0 £ 2.76
RoboHumanFlagrunHard-v1 81.1 £4.31 368+ 1.8 563+ 15 37.1+£2.07
RoboAtlasForwardWalk-v1 199.0 & 0.908 2120 £4.19 1950 £1.23 226.0 £2.34

w1, B = —0.005 m, B = —0.005

RobolnvDblPendulum-v1 7230.0 4 348.0 7630.0 £ 265.0
RoboHopper-v1 2130.0 +£32.2 2040.0 £ 146.0
RoboWalker2d-v1 1430.0 & 153.0 962.0 £ 133.0
RoboHalfCheetah-v1 2410.0 £ 17.0 1920.0 £ 240.0
RoboAnt-v1 2310.0 + 48.1 2070.0 £ 33.1
RoboHumanoid-v1 73.8 + 2.66 106.0 £2.24
RoboHumanFlagrunHard-v1 442 +1.85 274 +2.86
RoboAtlasForwardWalk-v1 189.0 £ 1.08 221.0 £ 1.81

In these experiments TRPO was run with an additional entropy term added to the reward function multiplied
with a factor 8. All algorithms are TRPO versions with the two different policy structures my (als), ma(als)
and different B except for the two COPOS entries. We report the mean of the average return over 50 last
iterations = standard error over 10 random seeds. Bold denotes: no statistically significant difference to the
best result (Welch’s t-test with p < 0.05)

References

Abdolmaleki, A., Lioutikov, R., Peters, J., Lau, N., Reis, L., & Neumann, G. (2015). Model-based relative
entropy stochastic search. In Advances in Neural Information Processing Systems (NIPS), MIT Press.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., & Riedmiller, M. (2018). Maximum a
posteriori policy optimisation. In Proceedings of the international conference on learning representations
(ICLR).

Akrour, R., Abdolmaleki, A., Abdulsamad, H., & Neumann, G. (2016). Model-free trajectory optimization
for reinforcement learning. In Proceedings of the international conference on machine learning (ICML).

Akrour, R., Abdolmaleki, A., Abdulsamad, H., Peters, J., & Neumann, G. (2018). Model-free trajectory-based
policy optimization with monotonic improvement. Journal of Machine Learning Research, 19(14), 1-25.

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation, 10(2), 251-276.

Bagnell, J. A., & Schneider, J. (2003). Covariant policy search. IJCAIL

Bernacchia, A., Lengyel, M., & Hennequin, G. (2018). Exact natural gradient in deep linear networks and its
application to the nonlinear case. In Advances in Neural Information Processing Systems (NIPS), Curran
Associates, Inc., pp 5945-5954.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

Daniel, C., Neumann, G., Kroemer, O., & Peters, J. (2016). Hierarchical relative entropy policy search. Journal
of Machine Learning Research (JMLR), 17(93), 1-50.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving
simulator. In Conference on robot learning, pp. 1-16.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking deep reinforcement
learning for continuous control. In Proceedings of the 33nd international conference on machine learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, pp 1329-1338. http://jmlr.org/proceedings/
papers/v48/duan16.html.

Geist, M., & Pietquin, O. (2010). Revisiting natural actor-critics with value function approximation. In Inter-
national conference on modeling decisions for artificial intelligence, Springer, pp. 207-218.

@ Springer

http://jmlr.org/proceedings/papers/v48/duan16.html
http://jmlr.org/proceedings/papers/v48/duan16.html

1466 Machine Learning (2019) 108:1443-1466

Hansen, N., & Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strategies. Evo-
lutionary Computation, 9(2), 159—-195.

Kakade, S. (2001). A natural policy gradient. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances
in neural information processing systems 14 (NIPS 2001) (pp. 1531-1538). Cambridge: MIT Press.

Kober, J., & Peters, J. R. (2009). Policy search for motor primitives in robotics. In D. Koller, D. Schuurmans,
Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems 21 (pp. 849-856).
Red Hook: Curran Associates, Inc.

Lillicrap, T. P,, Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv:1509.02971.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G, et al. (2015). Human-level
control through deep reinforcement learning. Nature, 518(7540), 529-533.

Mnih, V., Badia, A. P, Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016)
Asynchronous methods for deep reinforcement learning. In International conference on machine learn-
ing, pp. 1928-1937.

O’Donoghue, B., Munos, R., Kavukcuoglu, K., & Mnih, V. (2016). PGQ: Combining policy gradient and
q-learning. arXiv:1611.01626.

Peters, J., & Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71(7-9), 1180-1190.

Peters, J., Miilling, K., & Altun, Y. (2010). Relative entropy policy search. In AAAI Atlanta, pp. 1607-1612.

Ross, S., Pineau, J., Paquet, S., & Chaib-Draa, B. (2008). Online planning algorithms for POMDPs. Journal
of Artificial Intelligence Research, 32, 663-704.

Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology
and Computing in Applied Probability, 1(2), 127-190.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 1889-1897.

Schulman, J., Wolski, F.,, Dhariwal, P, Radford, A., & Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv:1707.06347.

Silver, D., Lever, G, Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deterministic policy gradient
algorithms. In /CML.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy gradient methods for reinforcement
learning with function approximation. In Proceedings of the 12th international conference on neural
information processing systems, MIT Press, Cambridge, MA, USA, NIPS’99, pp. 1057-1063.

Tangkaratt, V., Abdolmaleki, A., & Sugiyama, M. (2018). Guide Actor-Critic for Continuous Control. In
Proceedings of the international conference on learning representations (ICLR).

Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008). Natural evolution strategies. In /EEE congress
on evolutionary computation, IEEE, pp 3381-3387.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing. Machine Learning, 8(3—4), 229-256.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., & Ba, J. (2017). Scalable trust-region method for deep reinforce-
ment learning using kronecker-factored approximation. In Advances in neural information processing
systems (NIPS), pp. 5279-5288.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1611.01626
http://arxiv.org/abs/1707.06347

	Compatible natural gradient policy search
	Abstract
	1 Introduction
	2 Preliminaries
	3 Compatible policy search with natural parameters
	3.1 Equivalence of natural gradients and trust region optimization
	3.2 Compatible approximation for neural networks
	3.3 Compatible value function approximation in practice

	4 Analysis and illustration of the update rules

	5 Related work
	6 Experiments
	7 Conclusions and future work
	Acknowledgements
	A Solution for the Lagrange multipliers
	A.1 Computing Lagrange multipliers η and ω for log-linear parameters
	A.2 Computing η and ω for non-linear parameters
	A.3 Derivation of the dual for the discrete action case

	B Technical details for discrete action experiments
	C Additional continuous control experiments with a TRPO entropy bonus
	References

