
Projections for Approximate Policy Iteration Algorithms

Riad Akrour 1 Joni Pajarinen 1 2 Gerhard Neumann 3 4 Jan Peters 1 5

Abstract
Approximate policy iteration is a class of rein-
forcement learning (RL) algorithms where the
policy is encoded using a function approximator
and which has been especially prominent in RL
with continuous action spaces. In this class of
RL algorithms, ensuring increase of the policy
return during policy update often requires to con-
strain the change in action distribution. Several
approximations exist in the literature to solve this
constrained policy update problem. In this paper,
we propose to improve over such solutions by in-
troducing a set of projections that transform the
constrained problem into an unconstrained one
which is then solved by standard gradient descent.
Using these projections, we empirically demon-
strate that our approach can improve the policy
update solution and the control over exploration of
existing approximate policy iteration algorithms.

1. Introduction
Reinforcement learning (RL) formulates a general machine
learning problem in which an agent has to take a sequence
of decisions to maximize a supervision signal (Sutton &
Barto, 1998; Szepesvari, 2010). Because the agent’s de-
cisions influence the data gathering process, RL violates
the typical assumption of other machine learning settings
that data is independent and identically distributed (Bishop,
2006). To cope with this challenge, several RL algorithms
constrain the agent’s behavior to only slowly change. In
trajectory optimization and optimal control, a new policy is
made close to the policy around which the dynamics of the
system have been approximated through mixing (Todorov
& L., 2005; Tassa et al., 2014) or by a Kullback-Leibler
(KL) constraint (Levine & Abbeel, 2014b). In policy gra-

1IAS, TU Darmstadt, Darmstadt, Germany 2Tampere Univer-
sity, Finland 3L-CAS, University of Lincoln, Lincoln, United King-
dom 4Bosch Center for Artificial Intelligence (BCAI), Germany
5Max Planck Institute for Intelligent Systems, Tübingen, Germany.
Correspondence to: Riad Akrour <riad@robot-learning.de>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

dient, a key breakthrough was the use of natural gradient
that follows the steepest descent in behavioral space rather
than parameter space (Bagnell & Schneider, 2003; Peters &
Schaal, 2008; Bhatnagar et al., 2009), i.e. seeking maximal
objective improvement with minimal behavioral change.

Constraining successive policies to be close to each other
in approximate policy iteration is justified in the seminal
work of Kakade & Langford 2002 by the mismatch between
what the policy update should optimize and what is opti-
mized in practice. As in optimal control closeness can be
achieved by mixing policies (Kakade & Langford, 2002;
Pirotta et al., 2013), limiting deviation of their probability
ratio to one (Schulman et al., 2017) or constraining their KL
(Schulman et al., 2015; Abdolmaleki et al., 2018; Tangkaratt
et al., 2018; Akrour et al., 2018). To solve KL constrained
policy updates, Schulman et al. 2015 use a quadratic ap-
proximation of the KL which augments natural policy gra-
dient algorithms with a line-search step critically ensuring
KL constraint satisfaction; while Abdolmaleki et al. 2018,
Tangkaratt et al. 2018 and Akrour et al. 2018 rely on the
method of Lagrange multipliers to derive a general solution
in closed form before using sample-based approximations
to fit the policy to this solution.

We propose in this paper an alternative approach to policy
update under KL and entropy constraints. The core of our
approach lies in deriving a projection g mapping the para-
metric policy space to a subspace thereof complying with
the constraints. The constrained maximization of the pol-
icy update objective f is then solved by an unconstrained
maximization of f ◦ g. The projections derived in this paper
are independent of f and are shown to be relevant in sev-
eral scenarios pertaining to RL such as direct policy search
and approximate policy iteration, respectively introduced in
Sec. 2.1 and 2.2. We derive projections for entropy and KL
constraints of Gaussian search distributions in Sec. 3.1 be-
fore extending them to state-conditioned policies in Sec. 3.2.
In the experimental section we show for direct policy search
that our more direct approach to constrained optimization
sidesteps the need for sample based approximations, yield-
ing an algorithm more robust to low sample counts. We
additionally show that the same optimization scheme results
in large performance gains by improving the policy update
of two existing approximate policy iteration algorithms.

Projections for Approximate Policy Iteration Algorithms

2. Problem definition
We briefly introduce Direct Policy Search (DPS) and Ap-
proximate Policy Iteration (API) and two optimization ap-
proaches from the literature to tackle each setting. The
optimization problem for API is a straightforward extension
of the DPS problem to state conditioned distributions. Sim-
ilarly, the projections derived in Sec. 3.2 for API will be
an extension of those derived for DPS but are more easily
understood in the context of the simpler, state-independent,
distributions of DPS.

2.1. Direct policy search

Among the wide variety of approaches in policy
search (Deisenroth et al., 2013), a distinguishing property
of DPS is its reliance on parameter-space exploration as
opposed to action space exploration. In parameter-space
exploration, a search distribution samples parameters of de-
terministic policies. In contrast, action space exploration
adds noise to every time-step. We refer the reader to Deisen-
roth et al. 2013, Sec. 2.1, for a more in-depth discussion on
exploration strategies in policy search. DPS has applications
in robotics for its less jerky exploration scheme, causing
less wear and tear to the robot. When combined with spe-
cialized low dimensional policies, DPS can solve complex
tasks in a model-free fashion, running directly on robotic
platforms (Parisi et al., 2015). In simulation, parameter ex-
ploration was also used to train larger, neural network based,
policies (Plappert et al., 2017; Conti et al., 2018).

Formally, DPS seeks a policy parameter maximizing a
noisy reward signal R. To this end it maintains a search
distribution, usually of Gaussian shape (Heidrich-Meisner
& Igel, 2009; da Silva et al., 2012; Abdolmaleki et al.,
2015), π = N (µ,Σ). From π, policy parameters are
sampled and evaluated and π is iteratively updated. We will
focus on a simple and well founded formulation of DPS
that maximizes an expected reward objective L under a KL
constraint between successive search distributions. The KL
constraint is akin to specifying a learning rate, trading-off
exploration and exploitation and preventing the search
distribution from collapsing to a point-mass after a single
iteration.

Search distribution update optimization problem. At
each iteration having sampled and evaluated K parameters
from a search distribution q, the algorithm updates q by
solving the following constrained optimization problem

arg max
π

L(π), (1)

subject to KL(π ‖ q) ≤ ε, (2)
H(π) ≥ β, (3)

where ε ∈ R+, β ∈ R andH denotes the entropy of a distri-

bution. L(π) is approximated using importance sampling
and the K parameters sampled from q yielding

L(π) ≈ 1

K

∑
θ[i]∼q

π(θ[i])

q(θ[i])
R[i](θ[i]). (4)

The use of importance sampling in Eq. (4) behaves well in
practice because constraint (2) enforces π and q to be close
to each other.

This problem is identical to the one solved by MORE (Ab-
dolmaleki et al., 2015) which adds to the parameter explo-
ration version of REPS (Deisenroth et al. 2013, Sec. 2.4.3)
an entropy constraint given by (3)1. The problem solved by
MORE is sufficiently general to have other applications in
e.g. variational inference (Arenz et al., 2018) or Bayesian
optimization (Akrour et al., 2017). Using the method of
Lagrange multipliers, one can solve the aforementioned
optimization problem in closed form but the resulting distri-
bution is not necessarily Gaussian and requires an additional
sample-based approximation to yield a Gaussian π—as fur-
ther discussed in App. B. To avoid an additional sample-
based approximation step, we derive in Sec. 3.1 projections
that will ensure compliance with constraints (2) and (3),
allowing for a more direct, gradient-based, approach to this
optimization problem.

2.2. Approximate policy iteration

The constrained optimization problems of API (Bertsekas,
2011; Scherrer, 2014) and DPS can be surprisingly
close, although their problem constraints have different
justifications in the literature. To formalize the API
policy update problem we make use of ”MDPNv1”,
that is, a standard notation of Markov Decision Pro-
cesses (MDPs) defined in (Thomas & Okal, 2015).
Additionally, for policy π we define the Q-function
Qπ(s, a) = IE [

∑∞
t=0 γ

tR(st, at) | s0 = s, a0 = a], where
the expectation is taken w.r.t. random variables st and at
for t > 0; the value function Vπ(s) = IEa∼π(.|s) [Qπ(s, a)]
and the advantage function Aπ(s, a) = Qπ(s, a) − Vπ(s).
The goal in API is to find the policy maximizing the policy
return J(π) = Vπ(s0) for some starting state s0. In the
following we abuse the notation s ∼ π to mean sampling
from the (γ-discounted) state distribution associated with
the execution of π.

Policy update optimization problem. Once the advan-
tage function of current policy q is estimated, the pol-
icy update in API seeks π such that J(π) > J(q). The
policy update in API usually proceeds by maximizing

1The practical interest of the entropy constraint is to allow
the mean and covariance of the search distribution to update at
different rates.

Projections for Approximate Policy Iteration Algorithms

L̂(π; q) = IEs∼q [IEa∼π [Aq(s, a)]], as described in e.g.
Kakade & Langford 2002; Pirotta et al. 2013. L̂(π; q)
is a proxy to the more direct maximization of L(π; q) =
IEs∼π [IEa∼π [Aq(s, a)]] where the leftmost expectation is
w.r.t. the state distribution of π instead of q. It is a more
direct objective since L(π; q) = (1− γ) (J(π)− J(q)) as
shown in Kakade & Langford 2002, Lemma 6.1, and hence
maximizing L is equivalent to maximizing J . Unfortunately,
L is significantly more expensive to evaluate since state sam-
ples from π are not available. Because of this discrepancy
in state distribution, an unconstrained maximization of L̂
may yield a policy with a worse policy return than that of q.

On the other hand, if π and q are close enough so will their
state distribution and Kakade & Langford 2002 showed that
a positive L̂ will imply a positive L in this case. Closeness
between π and q was enforced in prior work by mixing the
greedy update policy with q (Kakade & Langford, 2002;
Pirotta et al., 2013) or by bounding the KL divergence be-
tween π and q (Peters et al., 2010; Levine & Abbeel, 2014a;
Schulman et al., 2015; Achiam et al., 2017). It is the latter
approach that we will consider, with the following optimiza-
tion problem

arg max
π

L̂(π; q), (5)

subject to IEs∼q [KL(π(.|s) ‖ q(.|s))] ≤ ε, (6)
IEs∼q [H(π(.|s))] ≥ β, (7)

Compared to the DPS optimization problem introduced ear-
lier, the optimization here carries over a state-conditioned
distribution and the KL and entropy constraints are ex-
pressed in average of the state distribution. Handling these
expectations will be the main difference between projections
for DPS and API.

3. Constraint projections
We derive in this section projections—i.e. idempotent
mappings—of the parameteric policy2 space to a subspace
thereof complying with the update constraints introduced in
the previous section. Let F ⊆ Rn be the subset of policy pa-
rameters complying with the constraints in either the DPS or
API case. In the remainder of this section we will introduce
several projections transforming a constrained optimization
problem to an unconstrained one. To show equivalence of
the optimization problems, for each projection g we will
show that g is a surjective mapping from Rn to F . That is,
g only returns parameters in F , and covers all of F .

Projections for Gaussian policies in the DPS case are de-
rived in Sec. 3.1 before being extended in Sec. 3.2 to state-
conditioned Gaussian distributions for API. For clarity of

2We use policy to also refer to DPS’s search distribution.

exposition we focus in this paper on Gaussian policies and
discuss projections for discrete action spaces in App. A.

3.1. Direct policy search

To solve the optimization problem defined in Sec. 2.1 we
will use a series of projections that will ensure that all param-
eterizations of a search distribution comply with constraints
(2) and (3). To fix ideas, let us first consider an entropy
equality constraint of a diagonal covariance matrix where
the inequality in (3) is replaced with an equality.

Let π = N (µ,Σ) be a Gaussian with diagonal covariance
Σ. We recall that the entropy of a Gaussian distribution only
depends on its covariance matrix and the notation H(Σ)
will be used interchangeably with H(π) and is given by
H(Σ) = 1

2 log(|2πeΣ|). Finally we define

h(λ, c) =

(
d

2
log(2πe) +

∑
i

λi

)
− β, (8)

where the inner most term is the entropy of some diagonal
covariance matrix having vector exp(2λ) ∈ Rd in its diag-
onal and β is the target entropy. The first parameterization
that transforms a constrained problem to an unconstrained
one is given by the following property.

Proposition 1. Optimizing any function L(π) w.r.t. mean
vector µ and diagonal matrix Σ of a Gaussian π = N (µ,Σ)
under entropy equality constraintH(π) = β is equivalent
to the unconstrained optimization of L(π) w.r.t. mean vector
µ and the real valued parameter vector λ such that Σi,i =
exp2(λi − 1

dh(λ, β)) with h as defined in Eq. (8).

Proof sketch. Through straightforward computations using
the definition of h, the Gaussian with diagonal covariance
as given in Prop. 1 has entropy of exactly β. Conversely,
if H(Σ) = β, setting λi = 1

2 log(Σi,i) will yield back Σ
since h(λ, β) = 0. Hence optimizing L(π) w.r.t. Σ under
constraint H(π) = β is equivalent to the unconstrained
optimization of L(π) w.r.t. λ.

Prop. 1 defines a projection g that maps any diagonal co-
variance matrix to a diagonal covariance matrix having an
entropy of exactly β by rescaling it with exp(2

dh(λ, β))).
As this projection is differentiable, and assuming L is also
differentiable—which is true for Eq. (4)—one can use gra-
dient ascent for the unconstrained maximization of L ◦ g. In
the following, we propose differentiable projections (differ-
entiable at least outside of the constraint boundary) to the
inequality constraintH(π) ≥ β, to full covariance matrices
and to the KL constraint.

Proposition 2. Optimizing any function L(π) w.r.t. mean
vector µ and diagonal matrix Σ of a Gaussian π = N (µ,Σ),
under entropy inequality constraintH(π) ≥ β is equivalent

Projections for Approximate Policy Iteration Algorithms

Algorithm 1 DPS Gaussian policy projection
Input: µ, λ, λoff diag, q = N (µq,Σq), ε and β
Output: π = N (µ,Σ) complying with KL (2) and en-
tropy (3) constraints
Σ = Entropy projection(λ, λoff diag, β)
if KL(N (µ,Σ) ‖ q) > ε then
ηg = ε

mq(µ)+rq(Σ)+eq(Σ)

Σ = ηgΣ + (1− ηg)Σq
end if
if KL(N (µ,Σ) ‖ q) > ε then
ηm =

√
ε−rq(Σ)−eq(Σ)

mq(µ)

µ = ηmµ+ (1− ηm)µq
end if

to the unconstrained optimization of L(π) w.r.t. mean vector
µ and the real valued parameter vector λ such that Σi,i =
exp(2 max(λi, λi− 1

dh(λ, β))) with h as defined in Eq. (8).

Proof of Prop. 2 is deferred to App. C. This proposition ex-
tends to full covariance matrices Σ where A is its Cholesky
decomposition, Σ = AAT , by having Ai,i = exp(λi), real
valued off-diagonal entries λoff diag, and by multiplying A
with exp(− 1

dh(λ, β)) if the entropy constraint is violated.
This finalizes the projection for constraint (3).

KL constraint. Let us now consider the KL constraint
(2) completing constraints of the DPS optimization prob-
lem. The KL between two Gaussian distributions π =
N (µ,Σ) and q = N (µq,Σq) is given by KL(π ‖ q) =
mq(µ)+rq(Σ)+eq(Σ), wheremq(µ) = 1

2 ||µ−µq||
2
Σ−1

q
=

1
2 (µ− µq)TΣ−1

q (µ− µq) is the change in mean, rq(Σ) =
1
2

(
tr(Σ−1

q Σ)− d
)

is the rotation of the covariance and

eq(Σ) = 1
2 log

|Σq|
|Σ| is the change in entropy.

Proposition 3. Optimizing any function L(π) w.r.t. mean
vector µ and covariance Σ of a Gaussian π = N (µ,Σ),
under entropy inequality constraint H(π) ≥ β and KL
constraint KL(π ‖ q) ≤ ε for Gaussian q such thatH(q) ≥
β is equivalent to the unconstrained optimization of L(π)
w.r.t. the parameterization given by Alg. 1.

Proof sketch. The assumption that H(q) ≥ β ensures that
the optimization problem admits a valid solution that satis-
fies both KL and entropy constraint. To prove that the KL
constraint is satisfied, we will follow a scheme common to
all remaining projections, including projections of discrete
distributions. We frame the projection as an interpolation
between the input and some target parameters, use bounds
stemming from the concavity of the log to obtain simple
equations of the interpolation parameter, and solve these
equations in closed form. Letting µηm = ηmµ+(1−ηm)µq
and Σηg = ηgΣ + (1− ηg)Σq be the interpolated mean and

covariance for interpolation parameters ηm and ηg in [0, 1],
the key result for bounding the KL of N (µηm ,Σηg) is

|Ση|
1
d ≥ |ηΣ| 1d + |(1− η)Σq|

1
d ,

(Minkowski determinant inequality)

log |Ση| ≥ η log |Σ|+ (1− η) log |Σq|,
(concavity of log)

eq(Ση) ≤ ηeq(Σ).

Exploiting linearity of the trace operator, one can straigh-
forwardly show the same property for rq(Ση), yielding
rq(Ση) + eq(Ση) ≤ η(rq(Σ) + eq(Σ)). While for the mean
we have mq(µη) = η2mq(µ). From these, one can see by
direct computation that the KL and entropy constraints are
satisfied with ηm and ηg as in Alg. 1.

In Prop. 3 we have assumed H(q) ≥ β which ensures
that q satisfies both entropy and KL constraints and that
interpolating a mean and covariance with those of q will
reliably return a policy satisfying these constraints. This
assumption is rather mild as one would expect entropy to
reduce in both DPS and API as data is gathered and hence
π shouldn’t be constrained to have a higher entropy than q.

The projection defined by Alg. 1 does not necessarily return
a search distribution that has KL equal to ε if the initial
search distribution has KL higher than ε. Indeed, when
interpolating the covariance matrix one cannot find an inter-
polation coefficient such that rq(Ση) + eq(Ση) is equal to
a given target in closed form, as this would require solving
x+ log x = y in closed form. The projection we derive in
App. A for discrete distributions also relies on concavity of
the log to compute an upper bound of the KL. However we
show empirically in Sec. 4 for both continuous and discrete
distributions that even though the projection is not always
on the constraint boundary, optimizing L ◦ g will drive the
solution to be on the constraint boundary.

3.2. Approximate policy iteration

We extend the previously defined projections to the API
case. The policy is now given by π(a|s) ∼ N (φ(s),Σ) for
state s and arbitrary mean function φ, given for example by
a neural network. In this setting, the covariance matrix is
state-independent and since the entropy only depends on
the covariance matrix, the expectation in constraint (7) van-
ishes. As a result the projection for the entropy constraint
is similar to DPS and follows from Prop. 2. For the KL
constraint in (6), let πη(.|s) be the Gaussian distribution of
mean ηmφ(s) + (1− ηm)φq(s), with φq the mean function
of previous policy q, and covariance ηgΣ+(1−ηg)Σq . Fol-
lowing the proof of Prop. (3) and by linearity of expectation

IEs [KL(πη(.|s) ‖ q(.|s))] ≤ ηmIEs
[
ms
q(φ(s))

]
+ ηgIEs [rq(Σ) + eq(Σ)] , (9)

Projections for Approximate Policy Iteration Algorithms

Algorithm 2 API linear-Gaussian policy projection
Input: A′, λ, λoff diag, q(.|s) = (ATq ψq(s),Σq), AT , ψ,
ε and β
Output: π(.|s) = N (A′Tψ(s),Σ) complying with KL
(6) and entropy (7) constraints
Σ = Entropy projection(λ, λoff diag, β)
if IEsKL(N (A′Tψ(s),Σ) ‖ q(.|s)) > ε then
ηg =

ε−mq(A)
mq(A′)+rq(Σ)+eq(Σ)

Σ = ηgΣ + (1− ηg)Σq
end if
if IEsKL(N (A′Tψ(s),Σ) ‖ q(.|s)) > ε then
a = .5IEs||A′Tψ(s)−ATψ(s)||2

Σ−1
q

b = .5IEs[(A
′Tψ(s)−ATψ(s))T

Σ−1
q (ATψ(s)−ATq ψq(s))]

c = mq(A) + rq(Σ) + eq(Σ)− ε
ηm = −b+

√
b2−ac
a

A′ = ηmA
′ + (1− ηm)A

end if

for interpolation parameters ηm and ηg of the mean and
covariance respectively. For the mean, ms

q is given by
ms
q(φ(s)) = 1

2 ||φ(s) − φq(s)||2Σ−1
q

. Since the covari-
ance is state independent, the rightmost expectation in
Eq. (9) vanishes. The projection of the KL constraint
for state-conditioned Gaussian distributions simply fol-
lows by computing ηm and ηg after replacing mq(µ) with
IEs
[
ms
q(φ(s))

]
in Alg. 1. However the resulting algorithm

would be impractical in a reinforcement learning setting.
While, in DPS the interpolated mean for a Gaussian distri-
bution can be computed compactly, in API unless φ and φq
are linear functions, one would need to store both φ and
φq. This scheme would be possible if the policy is built
incrementally by adding new components—for example
new neurones—at every iteration. In this paper however, we
restrict ourselves to training policies of fixed policy class.

To this end we employ a similar scheme to the two time-
scale RL algorithms (Levine et al., 2017; Chung et al., 2019),
and split the mean function φ(s) = ATψ(s) into the fea-
ture part ψ and the linear part A. We then use standard
API algorithms to update the policy including the feature
part before using the optimization tools we develop in this
section to further optimize the linear part and covariance
matrix of the distribution. We experiment this scheme with
two API algorithms discussed in Sec. 4.1. Starting from the
data generating policy q of mean function φq = ATq ψq(s),
API is used to update q and obtain an intermediary policy
φ = ATψ. The only assumption on the API algorithm is
that the intermediate policy does not violate the constraints—
which can be enforced by e.g. being overly conservative
with the step-size and backtracking if necessary. For the
following proposition let mq(A) = IEs

[
ms
q(A

Tψ(s))
]
.

Figure 1. Depiction of a linear optimization problem in probabil-
ity space under an entropy constraint, and comparison with the
projected gradient method (right). See Sec. 4 for details.

Figure 2. Regret and KL to the optimal solution of our method and
the projected gradient method, on 100 random instances of the
problem described in Sec. 4.

Proposition 4. Optimizing any function L(π) w.r.t. pa-
rameters A′ and Σ of linear in feature Gaussian policy
π(.|s) = N (A

′Tψ(s),Σ), under entropy constraint (7)
and KL constraint (6) to linear in feature Gaussian pol-
icy q(.|s) = N (ATq ψq(s),Σq) such that i) H(q) ≥ β and
ii) there exist A such that mq(A) ≤ ε, is equivalent to the
unconstrained optimization of L(π) w.r.t. the parameteriza-
tion given by Alg. 2.

Assumption (ii) on q ensures that the feature change from
ψq to ψ does not preclude the existence of a solution to
the optimization problem. Proof of Prop. 4 is deferred
to App. C. To summarize our contributions, two RL for-
mulations with constrained updates were considered. To
solve the constrained problem we proposed parameteriza-
tions and associated projections to transform the update
problems to unconstrained ones. The biggest advantage of
these projections is that they are differentiable—at least
outside of the constraint boundary. The practical inter-
est of this property will be made apparent in the experi-
ments section. Implementation of Alg. 2 is provided in
https://github.com/akrouriad/papi.

4. Experiments
Our first set of experiments is on simple optimization prob-
lems to assess the validity of our proposed optimization
scheme for constrained problems. Most of the introduced
projections g are not on the constraint boundary, at the ex-
ception of the entropy constraint of a Gaussian distribution.
Thus, it remains to be seen if optimizing L ◦ g by gradient
ascent can match the quality of solutions obtained via the

https://github.com/akrouriad/papi

Projections for Approximate Policy Iteration Algorithms

Figure 3. DPS performance on smooth objective functions. Left to right, samples per iteration of 27, 9, 6, and 3. Averaged over 11 runs.

method of Lagrange multipliers on simple problems.

We first consider the linear problem in probability space
of maximizing L(p) =

∑
pivi over a discrete distribution

p under entropy constraint H(p) ≥ β, for some arbitrary
vector v. Following the method of Lagrange multipliers, the
optimal solution has shape pi ∝ exp(vi/η) where η is a dual
parameter that can be accurately computed by optimizing a
uni-dimensional, convex, dual function. Using our method
we optimize the unnormalized log probabilities l and use
the projection g in App. A to ensure that H(g(l)) ≥ β for
any parameter l. Whereas we optimize L ◦ g, we compare
our method to the Projected Gradient method (Bertsekas,
1999) that projects back to the acceptable region after each
gradient step. We use for that the same projection g.

Fig. 1 shows in probability space an example run of such an
experiment for a three dimensional parameter l. While the
projection g is not on the constraint boundary, gradient ofL◦
g drives the optimizer to the optimal point. Whereas using
the same projection, the method of projected gradient stops
at a point where it bounces in and out of the valid region
without moving towards the optimum. This experiment was
repeated over 100 independent runs with randomly sampled
v and an initial point in the valid region. Fig. 2 shows that
our method always finds solutions with very small regret and
KL divergence to the optimal solution. While the average
regret and KL for the projected gradient method is orders of
magnitude higher. Despite g not projecting on the constraint
boundary, optimizing L ◦ g finds near-optimal solutions.
In contrast, using the same projection but projecting after
gradient updates does not yield as good results. However,
when the initial point is not in the valid region there were
few cases where our method would converge to a stationary
point that is not optimal; indicating that L◦g is not a convex
function despite the optimization problem being convex.

Secondly, we evaluate the use of the projection in Alg. 1
for the optimization of randomly generated smooth func-
tions (mixture of 25 bivariate Gaussians). Our approach
is compared to two baselines, REPS (Peters et al., 2010)
and MORE (Abdolmaleki et al., 2015) that solve a similar
problem to the one introduced in Sec. 3.1. For this problem
the method of Lagrange multipliers provides a closed form

solution but not when the search distribution is constrained
to be Gaussian. REPS and MORE use sample based approx-
imations to exploit the closed form solution for arbitrary
distributions. We consider a more direct approach, termed
’ProjectionPS’, that optimizes L ◦ g where g is given by
Alg. 1. Fig. 3 shows that all three methods perform simi-
larly when the sample count per iteration is high but that
our direct approach is more robust to low sample counts.
Additional figures in App. B show that despite g not pro-
jecting on the constraint boundary of the KL constraint, the
returned distributions have almost always a KL close to the
constraint limit ε. Additional details for this experiment are
provided in App. B.

4.1. API continuous action benchmarks

The use of the projections proposed in Sec. 3 in improving
existing API algorithms is now assessed. We combine the
projection of Alg. 2 to both TRPO (Schulman et al., 2015)
and PPO (Schulman et al., 2017). TRPO solves the same
API problem defined in Sec. 2.2 except for the entropy
constraint (7) and is thus a natural baseline to compare to.
The tools we have introduced can be integrated to several
other API algorithms. PPO was chosen as the second base
for our projections because Prop. 4 requires the features to
only slowly change. While PPO does not impose a hard
constraint on the change in distribution between successive
iterations, the clipped loss still proved useful in controlling
the latter. Indeed, the clipped loss of PPO discourages∣∣∣π(a|s)
q(a|s) − 1

∣∣∣ to be too large. This quantity when taken in
expectation of q, as is the case in PPO, is no other than
IEa∼q

∣∣∣π(a|s)
q(a|s) − 1

∣∣∣ =
∫
|π(a|s)− q(a|s)|da, two times the

total variation between π(.|s) and q(.|s). Hence, the clipped
loss of PPO provides no incentive in changing the policy
past a certain total variation threshold. By adjusting the
step-size of the gradient descent algorithm we were able to
reliably update the non-linear part of the policy such that
the KL constraint is respected while relevant features are
learned.

We implement our projections within OpenAI’s code base
(Dhariwal et al., 2017). The reported results for the base-
lines are also obtained from this implementation. The only

Projections for Approximate Policy Iteration Algorithms

Table 1. Average trajectory reward of the initial 100 iterations (Init.) and average reward of best window of 500 trajectories (Best) averaged
over 11 runs. Bolded are significantly better according to Welch’s t-test with p-value < .05.

RSHopper-v1 RSWalker-v1 RSHalfCheetah-v1 RSAnt-v1
Init. Best Init. Best Init. Best Init. Best

PAPI-PPO 121 ± 8 2237 ± 56 75 ± 4 1426 ± 434 55 ± 4 2353 ± 67 497 ± 29 1924 ± 110
PAPI-TRPO 75 ± 7 2166 ± 204 60 ± 5 1712 ± 382 32 ± 4 2524 ± 113 456 ± 29 1684 ± 233
PAPI-0-TRPO 61 ± 5 2122 ± 225 51 ± 3 1633 ± 342 20 ± 2 2202 ± 158 415 ± 17 1610 ± 201
TRPO 87 ± 11 2180 ± 123 65 ± 3 1183 ± 372 40 ± 2 1882 ± 172 443 ± 28 1575 ± 220
PPO 68 ± 8 2024 ± 175 58 ± 1 1016 ± 359 30 ± 2 2265 ± 85 420 ± 18 1871 ± 86

Figure 4. Effect of additional optimization steps using our optimization approach on solutions returned by TRPO and a conservative
version of PPO. Results show that our method finds policies closer to the KL constraint with higher objective improvement.

modification we make to the implementation of TRPO and
PPO is to use a Gaussian policy with a full covariance ma-
trix to match our setting. All our experiments use a neural
network policy with two hidden layers of 64 neurones. We
implement the optimization of the last layer and the covari-
ance matrix over a conservative version of PPO obtained
by saving the policy after each epoch and upon completion,
backtracking to the last set of parameters that has a KL
less than ε. If the selected policy is not part of the last 4
epochs the step-size of PPO’s optimizer is reduced. We then
proceed by doing several optimization steps using Alg. 2
to optimize the last layer of the neural network, i.e. the
linear part, and the covariance matrix of the Gaussian policy.
TRPO on the other hand did not require special modifica-
tions and our optimization was performed after the standard
TRPO update which always ensures that the KL is less than
ε. In the following, each of PPO and TRPO are prefixed
with PAPI (for Projected API) to indicate that additional
optimization steps were performed using the proposed tools.

We first study the behavior of each algorithm in solving the
constrained policy update of Sec. 2.2. For this we run each
of the base algorithms on an RL task (here RoboschoolHop-
per) and record the average KL and the improvement in
the update objective L(π)− L(q). We then optimize L ◦ g
using the projection of Alg. 2 and record the new KL and
objective improvement on the same update data set. Fig. 4
shows a clear improvement of PAPI-TRPO and PAPI-PPO
over their base algorithm in optimizing the policy update
objective. Notably, PAPI-TRPO finds solutions closer to
the KL constraint boundary and with higher objective value
than those obtained by the quadratic approximation of the
KL constraint used by TRPO.

In DPS, we noticed that performing additional gradient de-
scent steps during search distribution update would only
help the overall performance of the algorithm. We did not
observe the same relation in API. It was already known that
an unconstrained maximization of L could lead to poor per-
formance. However, even by constraining the KL between
successive policies, obtaining a better solution to the policy
update problem as defined in Sec. 2.2 does not necessarily
translates to better end performance. We observed that an
important indicator to track was the matrix norm of A, the
linear part of the policy mean. If the norm increases too fast,
it would lead to premature convergence of the algorithm.

A remedy was to use mini-batches when optimizing L ◦ g
which had a regularizing effect on A. For all of the
experiments—including Fig. 4—PAPI-PPO refers to per-
forming 20 epochs with mini-batches of size 64. For the
entropy constraint, we adopt a two phase approach where
we initially do not constrain the entropy until it reaches half
of the initial entropy and then decrease β linearly by a fixed
amount of ε. Using the same parameters for PAPI-TRPO
would result in improvements over TRPO for some tasks
but the entropy of the final policy was always relatively
high. We obtained best performance for PAPI-TRPO by
enforcing an entropy equality constraint using Prop. 1 and
only optimizing A for 10 epochs with mini-batches of size
64. To isolate the impact of the entropy equality constraint
we additionally report performance of PAPI-0-TRPO which
does not do any additional optimization of the policy but
performs the TRPO update under entropy constraint using
Prop. 1. As for baselines, from here on PPO refers to the
default version of the algorithm and not the conservative
version which is only used for PAPI-PPO.

Projections for Approximate Policy Iteration Algorithms

Figure 5. Comparison between PAPI-PPO and PAPI-TRPO with
their base counterpart on complex RL tasks.

We run a first set of experiments on four benchmark tasks
from Roboschool3 (Brockman et al., 2016). Tab. 1 reports
two metrics for each task. The average trajectory reward
of the initial 100 iterations (equivalent to 320K samples) to
measure learning speed and average reward of best window
of 500 trajectories to measure peak performance of each
algorithm. Results are averaged over 11 runs. We observe
that the additional optimization steps of L◦g provide a clear
performance boost in the initial learning iterations both from
the performance of PAPI-PPO and from the improvements
of PAPI-TRPO over PAPI-0-TRPO which does not perform
any additional optimization step. As for peak performance
we did not observe big discrepancies between the base ver-
sions and the PAPI versions except for the Walker (PPO and
TRPO) and HalfCheetah (TRPO only). In both cases we
hypothesize that the biggest improvement in peak perfor-
mance is the result of the entropy constraint, judging by the
performance of PAPI-0-TRPO. More challenging problems
are tackled in the next section.

4.2. Problems with hard exploration

We extend the study of the previous section to more challeng-
ing tasks of the Roboschool testbed. For these tasks we let
the RL agents collect up to 10 million samples and launch
5 independent runs for each algorithm. All other hyper-
parameters are kept as in the previous section. Fig 5 shows
a clear improvement of both PAPI-TRPO and PAPI-PPO
over their base algorithm with special mention to PAPI-PPO
that consistently learns good policies on both tasks.

Finally, we tackle a discrete action task designed to require
sustained exploration, termed BitFlip. In BitFlip, the state
space is a vector of N bits and there are N actions, flipping
the value of each bit. The reward is given by r(s, a, s′) =
−val(s′) if a flips a bit to 1 and val(s) otherwise, where
val(s) is the numerical value of the bit vector s. All bits of
s0 are 0 and the optimal policy is to continuously flip the
bits from right to left. This problem is challenging because
the optimal policy has to choose roughly half of the time the
action that does not provide the highest immediate reward.

3The tasks are not directly comparable to their analogue in
Mujoco (Erez et al., 2015). Please see for example Srouji et al.
2018 for a comparison between the two testbeds.

Figure 6. Policy return on the BitFlip task averaged over 11
runs (left). Policy entropy of the policy in the first run (right).

We compare TRPO and PPO with variants having a strict
entropy constraint, using the projection defined in App. A,
and linearly decreasing constraint lower bound β. A variant
of PPO with an entropy bonus (Schulman et al., 2017),
instead of a hard constraint, is also included. Fig. 6 shows
that TRPO converges early on to a sub-optimal policy. The
entropy of PPO and PPO-BonusEnt plateaus at a higher
level than TRPO which allows both baselines to steadily
improve, but because of the abrupt initial entropy reduction
the improvement is very slow. The entropy bonus, while
having a clear effect on the entropy of the policy is not
as transparent as the imposed hard constraint. Because
the balancing between L and the entropy bonus is fixed, it
initially has no effect on the policy entropy before reaching a
point where it dominates the objective. In contrast, the effect
of the linear decrease of β is clear in Fig. 6 on the entropy
plot. As for its impact on the return, it slows PAPI-0-TRPO
and PAPI-0-PPO initially but sustains a fast increase of the
policy return, resulting in a significantly better final policy.
Exploration in RL is complex, and the proposed projections
to control entropy of both continuous and discrete policies
can only be see as heuristics. However, we have shown
that they have a clear impact on the end performance while
being easier to tune than adding an entropy bonus.

5. Conclusion
We introduced a set of projections to tackle constrained
optimization problems common in RL. These projections
were empirically evaluated on a variety of settings from
simple optimization problems to complex RL tasks. The
practical interest of the adopted optimization scheme has
been demonstrated against many baselines such as projected
gradient descent and several DPS and API algorithms. The
proposed projections can be integrated to virtually any RL
algorithm. While adding a KL constraint might require
modification of the RL algorithm, projections for the entropy
constraint are comparatively lightweight. They are best
thought of as just adding a layer—the projection—to the
policy, while potentially reaping all benefits discussed in
the experiments section. We hope that such a scheme for
controlling exploration of the policy will prove to be a valid
alternative to adding an entropy bonus to the reward.

Projections for Approximate Policy Iteration Algorithms

Acknowledgements
The research leading to these results has received funding
from NVIDIA, from the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 640554 (SKILLS4ROBOTS) and from DFG project PA
3179/1-1 (ROBOLEAP). Computations were conducted on
the Lichtenberg high performance computer of TU Darm-
stadt and the NVIDIA DGX station.

References
Abdolmaleki, A., Lioutikov, R., Peters, J., Lau, N.,

Pualo Reis, L., and Neumann, G. Model-based rela-
tive entropy stochastic search. In Advances in Neural
Information Processing Systems (NIPS). 2015.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos,
R., Heess, N., and Riedmiller, M. Maximum a posteri-
ori policy optimisation. In International Conference on
Learning Representations, 2018.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In International Conference on Ma-
chine Learning (ICML), 2017.

Akrour, R., Sorokin, D., Peters, J., and Neumann, G. Local
bayesian optimization of motor skills. In International
Conference on Machine Learning (ICML), 2017.

Akrour, R., Abdolmaleki, A., Abdulsamad, H., Peters, J.,
and Neumann, G. Model-free trajectory-based policy
optimization with monotonic improvement. Journal of
Machine Learning Resource (JMLR), 2018.

Arenz, O., Zhong, M., and Neumann, G. Efficient gradient-
free variational inference using policy search. In Interna-
tional Conference on Machine Learning (ICML), 2018.

Bagnell, J. A. and Schneider, J. C. Covariant Policy Search.
In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 2003.

Bertsekas, D. P. Nonlinear Programming. Athena Scientific,
Belmont, MA, 1999.

Bertsekas, D. P. Approximate policy iteration: a survey
and some new methods. Journal of Control Theory and
Applications, 9(3):310–335, Aug 2011.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee, M.
Natural actor-critic algorithms. Automatica, 2009.

Bishop, C. M. Pattern Recognition and Machine Learning.
Springer-Verlag New York, 2006.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Chung, W., Nath, S., Joseph, A., and White, M. Two-
timescale networks for nonlinear value function approxi-
mation. In International Conference on Learning Repre-
sentations, 2019.

Conti, E., Madhavan, V., Petroski Such, F., Lehman, J., Stan-
ley, K., and Clune, J. Improving exploration in evolution
strategies for deep reinforcement learning via a popula-
tion of novelty-seeking agents. In Advances in Neural
Information Processing Systems (NIPS). 2018.

da Silva, B., Konidaris, G., and Barto, A. Learning Parame-
terized Skills. In International Conference on Machine
Learning (ICML), 2012.

Deisenroth, M. P., Neumann, G., and Peters, J. A Survey on
Policy Search for Robotics. Foundations and Trends in
Robotics, pp. 388–403, 2013.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plap-
pert, M., Radford, A., Schulman, J., Sidor, S., and
Wu, Y. Openai baselines. https://github.com/
openai/baselines, 2017.

Erez, T., Tassa, Y., and Todorov, E. Simulation tools for
model-based robotics: Comparison of bullet, havok, mu-
joco, ODE and physx. In International Conference on
Robotics and Automation (ICRA), 2015.

Heidrich-Meisner, V. and Igel, C. Hoeffding and bernstein
races for selecting policies in evolutionary direct policy
search. In International Conference on Machine Learning
(ICML), 2009.

Kakade, S. and Langford, J. Approximately optimal approxi-
mate reinforcement learning. In International Conference
on Machine Learning (ICML), pp. 267–274, 2002.

Levine, N., Zahavy, T., Mankowitz, D. J., Tamar, A., and
Mannor, S. Shallow updates for deep reinforcement learn-
ing. In Neural Information Processing Systems (NIPS),
2017.

Levine, S. and Abbeel, P. Learning Neural Network Policies
with Guided Policy Search under Unknown Dynamics.
Advances in Neural Information Processing Systems, pp.
1–3, 2014a.

Levine, S. and Abbeel, P. Learning neural network poli-
cies with guided policy search under unknown dynamics.
In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N., and Weinberger, K. (eds.), Advances in Neural Infor-
mation Processing Systems 27, pp. 1071–1079. Curran
Associates, Inc., 2014b.

Parisi, S., Abdulsamad, H., Paraschos, A., Daniel, C., and
Peters, J. Reinforcement learning vs human programming
in tetherball robot games. In International Conference on
Intelligent Robots and Systems (IROS), 2015.

https://github.com/openai/baselines
https://github.com/openai/baselines

Projections for Approximate Policy Iteration Algorithms

Peters, J. and Schaal, S. Natural Actor-Critic. Neurocompu-
tation, 71(7-9):1180–1190, 2008. ISSN 0925-2312.

Peters, J., Mülling, K., and Altün, Y. Relative entropy policy
search. In National Conference on Artificial Intelligence
(AAAI), 2010.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello, D.
Safe policy iteration. In Dasgupta, S. and McAllester, D.
(eds.), Proceedings of the 30th International Conference
on Machine Learning (ICML-13), volume 28, pp. 307–
315. JMLR Workshop and Conference Proceedings, May
2013.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,
R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychow-
icz, M. Parameter space noise for exploration. CoRR,
2017.

Scherrer, B. Approximate policy iteration schemes: A com-
parison. In Proceedings of the 31th International Confer-
ence on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014, pp. 1314–1322, 2014.

Schulman, J., Levine, S., Jordan, M., and Abbeel, P. Trust
Region Policy Optimization. International Conference
on Machine Learning (ICML), pp. 16, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017.

Srouji, M., Zhang, J., and Salakhutdinov, R. Structured
control nets for deep reinforcement learning, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT Press, Boston, MA, 1998.

Szepesvari, C. Algorithms for Reinforcement Learning.
Morgan & Claypool, 2010.

Tangkaratt, V., Abdolmaleki, A., and Sugiyama, M. Guide
actor-critic for continuous control. In International Con-
ference on Learning Representations, 2018.

Tassa, Y., Mansard, N., and Todorov, E. Control-limited
differential dynamic programming. In International Con-
ference on Robotics and Automation (ICRA), 2014.

Thomas, P. S. and Okal, B. A notation for markov decision
processes, 2015.

Todorov, E. and L., W. A generalized Iterative LQG Method
for Locally-Optimal Feedback Control of Constrained
Nonlinear Stochastic Systems. In American Control Con-
ference (ACC), 2005.

