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Abstract
Decentralized policies for information gathering are required when multiple autonomous 
agents are deployed to collect data about a phenomenon of interest when constant com-
munication cannot be assumed. This is common in tasks involving information gathering 
with multiple independently operating sensor devices that may operate over large physical 
distances, such as unmanned aerial vehicles, or in communication limited environments 
such as in the case of autonomous underwater vehicles. In this paper, we frame the infor-
mation gathering task as a general decentralized partially observable Markov decision 
process (Dec-POMDP). The Dec-POMDP is a principled model for co-operative decen-
tralized multi-agent decision-making. An optimal solution of a Dec-POMDP is a set of 
local policies, one for each agent, which maximizes the expected sum of rewards over time. 
In contrast to most prior work on Dec-POMDPs, we set the reward as a non-linear func-
tion of the agents’ state information, for example the negative Shannon entropy. We argue 
that such reward functions are well-suited for decentralized information gathering prob-
lems. We prove that if the reward function is convex, then the finite-horizon value func-
tion of the Dec-POMDP is also convex. We propose the first heuristic anytime algorithm 
for information gathering Dec-POMDPs, and empirically prove its effectiveness by solving 
discrete problems an order of magnitude larger than previous state-of-the-art. We also pro-
pose an extension to continuous-state problems with finite action and observation spaces 
by employing particle filtering. The effectiveness of the proposed algorithms is verified in 
domains such as decentralized target tracking, scientific survey planning, and signal source 
localization.
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1 Introduction

Autonomous agents and robots can be deployed in information gathering tasks in environ-
ments where human presence is either undesirable or infeasible. Examples include moni-
toring of deep ocean conditions, or space exploration. It may be desirable to deploy a team 
of agents due to the large scope of the task at hand, resulting in a multi-agent active infor-
mation gathering task. Such a task typically has a definite duration, after which the agents, 
the data collected by the agents, or both, are recovered. For example, underwater survey 
vehicles may be recovered by a surface vessel after completion of a survey mission, or the 
agents may periodically communicate their data back to a base station.

The overall task can be viewed as sequential decision-making. Each agent takes an 
action and then perceives an observation. The action taken is determined based on the his-
tory of the agents’ past actions and observations. Action selection is repeated after per-
ceiving each observation until the task ends. To maximize effectiveness of the team and 
the informativeness of the data collected, planning is required. Planning produces a policy 
that prescribes how each team member should act to maximize a shared utility. Utility in 
information gathering tasks is measured by information-theoretic quantities, such as nega-
tive entropy or mutual information. Planning should also take into account the possible 
non-determinism of action effects and observation noise. During the task, the maximum 
range of communication between agents and the amount of data that can be transmitted can 
vary, or there may be delays in communication. At one extreme, communication is entirely 
prevented during task execution.

We approach cooperative information gathering as a decentralized partially observable 
Markov decision process, or Dec-POMDP  [7, 37]. The Dec-POMDP is a general model 
for sequential co-operative decision-making under uncertainty. It models uncertainty in the 
current state of the system, the effects of actions, and observation noise. Types of inter-
agent communication, such as data-rate limited, delayed, or non-existent communication, 
can be explicitly modelled in the Dec-POMDP framework. This generality makes the Dec-
POMDP an ideal choice for formalizing multi-agent information gathering problems.

Specifically, a Dec-POMDP models a sequential multi-agent decision making task. 
There is an underlying hidden system state, and a set of agents. Each agent has its own 
set of local actions it can execute, and a set of local observations it may perceive. Marko-
vian state transition and observation processes conditioned on the agents’ actions and the 
state determine the relative likelihoods of subsequent states and observations. A reward 
function determines the utility of executing any action in any state. In a Dec-POMDP, no 
implicit communication or information sharing between the agents during task execution 
is assumed. Communication may be explicitly modelled via the actions and observations. 
Each agent acts independently, without necessarily knowing what the other agents have 
perceived or how they have acted. The objective in a Dec-POMDP is to plan optimal local 
policies for each agent that maximize the expected sum of rewards over a finite horizon of 
time.

A decentralized information gathering task differs from other multi-agent control tasks 
by the lack of a goal state. It is not the purpose of the agents to execute actions that reach a 
particular state, but rather to observe the environment in a manner that provides the great-
est amount of information while satisfying operational constraints. As the objective is 
information acquisition, the reward function depends on the joint belief of the agents.

In contrast to most prior work on Dec-POMDPs, in this paper we consider reward func-
tions that are non-linear functions of the joint belief state. Convex functions of a probability 
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mass function naturally model certainty  [13], and have been proposed before in the con-
text of single-agent POMDPs   [3] and Dec-POMDPs   [27]. However, to the best of our 
knowledge no heuristic or approximate algorithms for convex reward Dec-POMDPs have 
been proposed, and no theoretical results on the properties of such Dec-POMDPs exist in 
the literature.

1.1  Contributions

Information gathering in decentralized POMDPs (Dec-POMDPs) remains very much an 
unexplored topic in multi-agent research. According to our knowledge, the only paper prior 
to ours on information gathering Dec-POMDPs is  [27] (same first author as in this paper). 
Linear reward Dec-POMDPs are solved in several works  [7, 14, 19, 29, 33, 35, 38, 40, 42, 
47] and Spaan et.  al. gather information in fully centralized multi-agent POMDPs   [50]. 
Our work in contrast focuses on Dec-POMDPs with a non-linear reward function. Informa-
tion gathering for single-agent POMDPs is formalized by Araya-López et.  al.   [3] using 
a convex reward function. In this paper, we prove that the value function of information 
gathering Dec-POMDPs is convex. Lauri et. al.  [27] apply the ideas presented in  [3] to the 
Dec-POMDP setting by modifying an existing search tree based Dec-POMDP algorithm. 
We instead utilize our new proof of value function convexity by combining the idea of iter-
ative improvement of a fixed-size policy represented as a graph  [42], and reasoning about 
reachability of the graph nodes in a manner methodologically similar to the plan-time suf-
ficient statistics of  [35]. In experiments, our algorithm solves problems an order of magni-
tude larger than prior state-of-the-art. The Dec-POMDP generalizes other decision-making 
formalisms such as multi-agent POMDPs and Dec-MDPs  [7]. Thus, our results also apply 
to these special cases, as illustrated in Fig. 1.

Specifically, the contributions of our article are:

• We prove that in Dec-POMDPs where the reward is a convex function of the joint 
belief, the value function of any finite horizon policy is convex in the joint belief.

• We propose the first heuristic anytime algorithm for Dec-POMDPs with a reward that 
is a function of the agents’ joint state information. The algorithm is based on iterative 
improvement of the value of fixed-size policy graphs. We derive a lower bound that 
may be improved instead of the exact value, leading to computational speed-ups. We 
also propose an extension of the algorithm for problems with a continuous state space 
and finite action and observation spaces.

• We experimentally verify the feasibility and usefulness of our algorithm in Dec-POM-
DPs with non-linear rewards, in domains such as decentralized target tracking, scien-
tific survey planning, and signal source localization.

Fig. 1  Relationships of Marko-
vian decision processes. Dec-�
POMDPs investigated in this 
article are Dec-POMDPs with a 
reward that is a convex function 
of the joint belief state

Dec-POMDP

POMDP Dec-MDPMDP
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This article is an extended version of our earlier conference paper   [28] published in the 
Proceedings of the International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS) 2019. The extensions compared to the conference paper are the following:

• The conference paper is restricted to discrete small state spaces. To improve the appli-
cability of the proposed approach, we extend the algorithm to large discrete and con-
tinuous state spaces by utilizing particle filtering.

• We extend the experimental evaluation with a new benchmark task motivated by signal 
source localization and mobile robotics. In the benchmark task, the agents can move 
from a graph node to another and receive observations of a signal source depending on 
the distance to the source. For the discrete domains, we provide new data for the any-
time performance of our proposed algorithm.

• We extend the related work section, and describe the algorithm in more detail. In par-
ticular, we clarify the backward pass. We also provide a complexity analysis of the pro-
posed algorithm.

1.2  Outline

The article is organized as follows. We review related work in Sect. 2. In Sect. 3, we define 
the Dec-POMDP problem we consider and introduce notation and definitions. Section 4 
derives the value of a policy graph node. In Sect. 5, we prove convexity of the value in 
a Dec-POMDP where the reward is a convex function of the state information. Section 6 
introduces our policy improvement algorithm, while in Sect. 7 we present its extension to 
continuous-state problems with finite action and observation spaces. Experimental results 
are presented in Sect. 8, and concluding remarks are provided in Sect. 9.

2  Related work

In a wide range of applications, autonomous systems have controllable sensors or the abil-
ity to otherwise control data acquisition. This allows active information gathering and 
planned allocation of sensing resources. Active information gathering is known by sev-
eral synonyms or near-synonyms depending on the context and subfield, such as sensor 
management   [20] or active perception   [6]. In the following, we first review approaches 
based on other models than Dec-POMDPs for multi-agent active information gathering. 
Secondly, we review the state-of-the-art in Dec-POMDPs and highlight the differences to 
the present paper.

2.1  Multi‑agent active information gathering

In the following paragraphs, we review related work in multi-agent active information 
gathering in three major directions: distributed constraint optimization problems, applica-
tion of sequential greedy maximization of submodular functions, and adaptation of single-
agent POMDP methods to the multi-agent setting. Finally, we briefly review other related 
techniques such as applying open loop planning, gradient ascent based control, stochastic 
control under simplifying assumptions, and active distributed hypothesis testing.

A detailed review of the solution techniques for each of these related approaches is 
beyond the scope of the present paper. We refer the reader to relevant literature on the 
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respective topics, and instead focus on describing applications and modelling assumptions 
and contrasting them to the Dec-POMDP approach to multi-agent active information gath-
ering. Each of the alternative approaches we review makes some simplifying assumptions 
about the active information gathering problem in contrast to Dec-POMDP based planning. 
For instance, action effects may be assumed to have known outcomes. The system state 
may be assumed to be static, or perfectly known to the agents, or it may be assumed to 
evolve deterministically. Finally, implicit local communication is often assumed to be pos-
sible, whereas in the Dec-POMDP communication is allowed only if explicitly modelled.

Distributed constraint optimization problems Information gathering can be framed as a 
distributed constraint optimization problem (DCOP). Instead of trying to find a policy for 
each agent that maximizes total expected information gain in a stochastic dynamic system 
over time, the standard DCOP finds a variable assignment for each agent such that, for 
example, sensors cover a large area. Compared to a full Dec-POMDP solution a DCOP 
approach is computationally less intensive but usually requires stronger assumptions or 
approximations to the underlying problem. There are also extensions to basic DCOP; we 
discuss DCOPs and these extensions in the context of information gathering next.

Distributed constraint optimization problems (DCOPs) are described by a set of agents 
and a set of variables along with a set of cost functions. Each variable is assigned to one of 
the agents. Each of the cost functions is defined on a subset of the variables it is affected 
by. The cost functions are real-valued, although an additional special value can indicate a 
violated constraint. A solution of a DCOP is an assignment of all variables that does not 
violate any of the constraints, with each agent only choosing the assignment of variables 
assigned to it. The objective is to find a solution that minimizes the sum of the individual 
cost functions such that no constraints are violated. With regards to communication, a typi-
cal setting in DCOPs is that each agent can communicate locally with its neighbouring 
agents to coordinate actions. The most relevant variants of DCOPs for active information 
gathering are dynamic DCOPs and probabilistic DCOPs  [54], which we discuss next. For 
a detailed introduction to DCOPs and their solution algorithms, we refer the reader to the 
recent survey  [16].

A dynamic DCOP (D-DCOP) extends the variables, assignments, and cost functions to 
depend on a discrete time step. A D-DCOP may be viewed as a sequence of DCOP prob-
lems, one for each time step. The DCOP at the current time step is assumed to be known 
by the agents, however the agents are unaware how the DCOP will evolve over future time 
steps. Zivan et. al.   [57] present a D-DCOP variant for controlling a mobile sensor team 
tracking multiple targets. Each sensor is an agent that has a perfectly observable variable 
describing its location which may evolve locally over time. Each target is represented by 
a cost function whose value depends on how well the sensors cover the target. The cover-
age of a target is measured by a monotonic function of the number of agents within sens-
ing range of the target, and no explicit probabilistic modelling of the sensing process is 
undertaken.

Markovian D-DCOPs   [34] augment D-DCOPs by introducing an underlying state 
with Markovian dynamics depending on the variable assignments. The cost functions 
are dependent on the state that is fully observable. Unlike in the D-DCOP, changes in 
the Markovian D-DCOP are restricted to changes in the underlying state. The Markovian 
D-DCOP is demonstrated in a multi-sensor tracking environment, where the target state 
is described using the Markovian dynamics and the variable assignments correspond to 
assignments of sensors to targets.

Probabilistic DCOPs (P-DCOP) contain two types of variables: decision variables 
and random variables. Decision variables are analogous to variables in the DCOP, with 
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assignments selected by the agents. Random variables model events beyond the agents’ 
control and assume values according to a specified probability distribution. In the 
P-DCOP actions have known outcomes. Uncertainty in environment dynamics is mod-
elled by defining stochastic cost functions. The cost functions may depend on decision 
variables and random variables. The objective is to find an assignment of all decision 
variables such that, e.g., the expected utility of the assignments under the probability 
distribution of the random variables is maximized. P-DCOPs with partial agent knowl-
edge   [22, 53] are a variant especially relevant for active information gathering. They 
introduce a finite time horizon to the P-DCOP, and a solution is an assignment of deci-
sion variables for each time step. The objective is to maximize the cumulative utility 
over the time horizon. At each time step the agents acquire information about the cost 
functions and the available utility through exploration. P-DCOPs have been applied to 
a mobile wireless network problem, where the objective is to choose agent locations 
to maximize the signal strength of an ad-hoc communication relay network formed 
between the agents  [22, 53].

Sequential greedy maximization of submodular functions Submodularity is a property 
of a set function often used for proving a bound on the suboptimality of greedy algorithms 
in information gathering. The tasks that we target in this paper are in general not approxi-
mately solvable by a greedy algorithm. Below we discuss how information gathering prob-
lems are formulated to allow use of greedy submodular maximization with suboptimality 
bounds. This will help the reader build a deeper understanding of the challenges this paper 
addresses.

The assignment or selection of sensors can be formulated as a selection of a subset 
among a larger set of possible choices. The selection corresponds to a choice of which 
sensors to apply, where to deploy sensors, or how to operate multiple sensors. The util-
ity of an assignment is then measured by a set function that maps the selected subset to a 
real-valued utility. Several set functions relevant for active information gathering such as 
mutual information and entropy are submodular. Informally, the submodularity property 
of a set function encodes the intuition that the marginal benefit of deploying a new sensor 
is reduced as we deploy more and more sensors. A sequential greedy algorithm is often 
applied to approximately maximize submodular functions. Such an algorithm sequentially 
finds the item with the greatest marginal utility, and inserts it into the current subset of 
selected items. The selection is repeated until a subset with the required number of items 
has been obtained. Maximization of a submodular set function by this greedy approach 
results in an approximation within at most a factor of (1 − 1∕e) from an optimal solution. 
Consequently, this selection method has been applied to optimize sensor placements under 
a Gaussian process model of spatial phenomena  [24]. In this approach, mutual information 
between the selected sensing locations and the rest of the space is maximized.

In multi-agent active information gathering, submodular function maximization under 
a matroid constraint is especially relevant. A matroid is a mathematical structure that 
generalizes the notion of linear independence from vector spaces to sets. In multi-agent 
active information gathering, the independent sets in a matroid correspond to possible 
joint actions or sensing strategies of each of the agents in a team. Approximation guaran-
tees for the sequential greedy algorithm outlined above can also be proven for submodular 
maximization under a matroid constraint   [10]. A distributed algorithm based on greedy 
maximization for multi-robot exploration is proposed in  [12]. As the proposed algorithm 
runs in parallel on all of the agents, the required time of planning is reduced compared to 
sequential planning for each agent in turn, e.g., as proposed in  [4]. To simplify the prob-
lem, Corah and Michael  [12] plan over sequences of actions rather than over closed-loop 
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policies. Contrary to a Dec-POMDP model, a fully connected communication network and 
a shared belief state among all agents are assumed.

In distributed submodular optimization under a matroid constraint, the information an 
agent has about the actions of other agents affects the approximation quality obtained with 
the greedy algorithm. Gharesifard and Smith  [17] assume each agent knows the strategies 
of its neighbouring agents, as defined by a communication graph. A local greedy algorithm 
is found to approximate an optimal solution within a factor inversely proportional to the 
clique number of the communication graph: the larger the maximum clique in the graph, 
the better the approximation factor.

Adapting single-agent POMDPs Single-agent POMDPs feature imperfect knowledge 
of the underlying true state in a system, uncertain action effects and noisy observations. 
If instantaneous communication and centralized control are assumed, multi-agent active 
perception may be treated as a POMDP under the control of a central controller that deter-
mines the actions of all individual agents  [45, 50].

When strong centralization assumptions are infeasible, POMDP techniques may be 
adapted to multi-agent active information gathering by adding additional coordination 
mechanisms. A notable example is  [11], where a decentralization scheme based on an auc-
tion mechanism is proposed. Each agent is assumed to play one of a finite set of roles or 
behaviours. Each role corresponds to a specific local reward function that depends on the 
local state and action of the agent playing the role. The complete reward function is defined 
as the sum of local reward functions and a joint reward function modelling agent coopera-
tion. At run-time, each individual agent first solves a centralized multi-agent POMDP plan-
ning problem to compute a policy and its value for each of the potential roles. An auction 
algorithm is applied for task allocation where the cost of assigning a policy to an agent 
is equal to the negative value of the policy, resulting in high-value policies likely being 
assigned to each agent. The resulting approach requires some communication between the 
agents to facilitate the bidding, but can avoid the computational complexity of planning in 
a Dec-POMDP. The approach is demonstrated in two scenarios, environmental monitoring 
and cooperative tracking.

Other related work Multi-agent information gathering may be formulated as an open-
loop planning problem, where the solution is a sequence of actions or a path to be traversed 
for each agent. These approaches ignore the adaptivity of Dec-POMDP solutions that allow 
agents to modify their behaviour conditional on the observations received at run-time. 
Instead, if communication is possible at some time after starting execution of the paths, 
replanning may be applied to update the solution based on the information acquired up to 
that time. An example of decentralized open-loop planning with periodic communication 
is the decentralized Monte Carlo tree search (Dec-MCTS) algorithm  [9]. The agents are 
first provided with initial information of each others’ plans. Each agent in a team runs an 
instance of MCTS to optimize its local actions, assuming the other agents will act accord-
ing to their last known plan. The updated plans found via local MCTS instances are peri-
odically communicated between the agents, and planning is restarted. Hollinger and Singh  
[21] formalize multi-agent exploration as path planning in a time-expanded graph. Instead 
of assuming communication links exist between agents, feasible paths are constrained in a 
way that agents will periodically be within communication range. While in communication 
range, the agents share information and may replan to update the subsequent paths.

Several works propose to derive a control policy for each individual agent that follows 
the gradient of mutual information   [5, 23]. Joint belief states are updated via agent-to-
agent communication. Communication links are described by a graph, and convergence of 
the state estimate to the true value is shown in the case of a connected graph.
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The problem of planning policies for multi-agent active information gathering can be 
simplified if assumptions are made regarding the dynamics of the state transitions and the 
observation processes of the agents. Schlotfeldt et. al.   [46] investigate a problem with a 
deterministic state transition model with a linear-Gaussian model of the observation pro-
cess. The joint belief state in this case is Gaussian and may be tracked by a Kalman filter 
(see, for example,   [44, Sect.  4.3]). In particular, the covariance matrix of the Gaussian 
is independent of the actual measurement values recorded. The covariance matrix only 
depends on the deterministic state trajectory of the agent. This allows planning a policy for 
active information gathering by solving an open loop control problem, analogous to similar 
approaches in classical control theory where a measurement subsystem can be controlled 
independently of the overall plant control task  [30]. Schlotfeldt et. al.  [46] search policies 
for each agent sequentially, assuming the other agents’ plans are fixed. A distributed esti-
mation scheme is proposed to enable decentralization, requiring a connected communica-
tion graph to guarantee state estimate convergence.

Distributed hypothesis testing   [26] targets a scenario where a stationary hidden state 
(hypothesis) should be inferred from noisy observations recorded by a team of agents. The 
agents perform local Bayesian belief updates, and communicate the updates to neighbour-
ing agents. A consensus algorithm is applied to fuse the updates from neighbours into an 
updated local belief with convergence guarantees. Active distributed hypothesis testing 
where each agent can choose among a finite set of sensing actions is considered by Lalitha 
and Javidi  [25]. They characterize randomized action strategies that ensure that the maxi-
mum likelihood estimate of the hypothesis converges to the true hypothesis.

2.2  Decentralized POMDPs

In this subsection, we first provide a brief summary of the state-of-the-art in Dec-POMDPs 
with linear reward functions. The expected value of a reward function that depends on the 
hidden state and action is a linear function of the joint belief. These types of rewards are 
standard in Dec-POMDPs. Then, we describe related work in active information gathering 
in single-agent POMDPs and Dec-POMDPs that are especially relevant for the work pre-
sented in this paper. These works target problems with a reward function that is convex in 
the joint belief, allowing convenient modelling of information gathering tasks.

Dec-POMDPs with linear reward functions The computational complexity of finding an 
optimal decentralized policy for a finite-horizon Dec-POMDP is NEXP-complete  [7], that 
is, double-exponential w.r.t. the planning horizon. It is also NEXP-complete to compute 
solutions with an absolutely bounded error  [43].

Exact algorithms for Dec-POMDPs may apply either backwards in time dynamic pro-
gramming  [19], or forwards in time heuristic search  [38, 52]. It can also be shown that 
a Dec-POMDP is equivalent to a special case of a POMDP that is completely unobserv-
able  [14, 29, 36]. The state space of this POMDP is the set of possible plan-time sufficient 
statistics  [35], which are joint distributions over the hidden state and the histories of the 
agents’ actions and observations given the past policies executed by the agents. The actions 
correspond to selecting the next decision rules for the agents. An optimal policy for such 
a non-observable POMDP is an optimal sequence of local decision rules for each agent, 
which corresponds to an optimal solution of the equivalent Dec-POMDP. This insight has 
allowed adaptation of POMDP algorithms for solving Dec-POMDPs  [14].
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Approximate and heuristic methods for solving Dec-POMDPs have been proposed, e.g., 
based on finding locally optimal “best response” policies for each agent   [33], memory-
bounded dynamic programming  [47], cross-entropy optimization over the space of poli-
cies  [40, 41], or monotone iterative improvement of fixed-size policies  [42]. Algorithms 
for special cases such as goal-achievement Dec-POMDPs  [2] and factored Dec-POMDPs  
[39] have also been proposed.

Structural properties, such as transition, observation, and reward independence between 
the agents, can also be leveraged and may even result in a problem with a lesser compu-
tational complexity  [1]. Some Dec-POMDP algorithms  [38] take advantage of plan-time 
sufficient statistics. The sufficient statistics provide a means to reason about possible distri-
butions over the hidden state, also called joint beliefs, reached under a given policy.

No implicit communication between the agents is assumed in the Dec-POMDP frame-
work. However, communication may be explicitly included into the Dec-POMDP model 
if desired, leading to the so-called Dec-POMDP-Com model  [18]. Spaan et. al.  [49] also 
include communication into their Dec-POMDP model but in addition split state features 
into local and shared global ones making belief tracking, as in POMDP models, possible. 
In another line of work, Wu et. al.  [56] investigate online decision making in Dec-POM-
DPs. Their goal is to reduce the amount of communication needed in online Dec-POMDP 
planning: agents re-synchronize with other agents whenever the behavior of other agents 
changes sufficiently from the expected behavior.

Active Information Gathering in POMDPs and Dec-POMDPs In the context of single-
agent POMDPs, Araya-López et al.   [3] argue that information gathering tasks are natu-
rally formulated using a reward function that is a convex function of the state informa-
tion and introduce the �POMDP model with such a reward. This enables application of, 
for example, the negative Shannon entropy of the state information as a component of the 
reward function. Under a locally Lipschitz continuous reward function, an optimal value 
function of a �POMDP is Lipschitz-continuous  [15] which may be exploited in a solution 
algorithm.

Spaan et. al.  [50] introduce an alternative formulation for information gathering in sin-
gle agent POMDPs that assumes problem specific state features and for each state feature a 
special action for committing to a specific value of the state feature. This allows for reward-
ing information gathering without changing the POMDP optimization process at the cost 
of growing the action space and the need for selecting features. Subsequently, it was proven 
that a �POMDP with a piecewise linear and convex reward function can be transformed 
into a standard POMDP with a linear reward function  [45]. The key to making the trans-
formation is to augment the action space of the POMDP by adding a prediction action for 
each of the linear components of the �POMDP reward function. The reward function for 
the new prediction actions is set to return the reward of the corresponding component of 
the �POMDP reward function. The conversion also allows an optimal solution for either 
problem to be transformed into an optimal solution of the other problem in polynomial 
time.

In this article, we present the first heuristic algorithm for Dec-POMDPs with rewards 
that depend non-linearly on the joint belief. Our algorithm is based on the combination of 
the idea of using a fixed-size policy represented as a graph  [42] with plan-time sufficient 
statistics   [35] to determine joint beliefs at the policy graph nodes. The local policy at 
each policy graph node is then iteratively improved, monotonically improving the value of 
the node. We show that if the reward function is convex in the joint belief, then the value 
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function of any finite-horizon Dec-POMDP policy is convex as well. This is a generaliza-
tion of a similar result known for single-agent POMDPs   [3]. Lauri et.  al.   [27] directly 
apply the ideas presented in   [3] to the Dec-POMDP setting by modifying an existing 
search tree based Dec-POMDP algorithm that can solve small problems. However, our new 
approach allows us to derive a lower bound for the value of a policy. We empirically show 
that an algorithm maximizing this lower bound finds high quality solutions. Thus, com-
pared to prior state-of-the-art in Dec-POMDPs with convex rewards  [27], our algorithm is 
capable of handling problems an order of magnitude larger.

We do not require any communication between agents during task execution, and do not 
make any distributional assumptions about the state transition or observation models.

3  Decentralized POMDPs

We next formally define the Dec-POMDP problem we consider. Contrary to most earlier 
works, we define the reward as a function of state information and action. This allows us 
to model information acquisition problems. We choose the finite-horizon formulation to 
reflect the fact that a decentralized information gathering task should have a clearly defined 
end after which the collected information is pooled and subsequent inference or decisions 
are made.

A finite-horizon Dec-POMDP is a tuple (T, I, S, {Ai} , {Zi} , Ps , Pz , b0,{�t}) , where

• T ∈ ℕ is the problem time horizon. In other words, time steps t = 0, 1,… , T  are consid-
ered in the problem.

• I = {1, 2,… , n} is a set of agents.
• S is a finite set of hidden states. We write st for a state at time t.
• {Ai} and {Zi} are the collections of finite local action and local observation sets of each 

agent i ∈ I , respectively. The local action and observation of agent i at time t are writ-
ten as at

i
∈ Ai and zt

i
∈ Zi , respectively. We write as A and Z the Cartesian products of 

all Ai or Zi , respectively. Furthermore, the joint action and observation at time t are 
written as at = (at

1
,… , at

n
) ∈ A and zt+1 = (zt+1

1
,… , zt+1

n
) ∈ Z , respectively.

• Ps is the state transition probability that gives the conditional probability Ps(st+1 ∣ st, at) 
of the new state st+1 given the current state st and joint action at.

• Pz is the observation probability that gives the conditional probability Pz(zt+1 ∣ st+1, at) 
of the joint observation zt+1 given the state st+1 and previous joint action at.

• b0 ∈ �(S) is the initial state distribution,1 also called the joint belief, at time t = 0.
• �t ∶ �(S) × A → ℝ are the reward functions at times t = 0,… , T − 1 , while 

�T ∶ �(S) → ℝ determines a final reward obtained at the end of the problem horizon.

Most works in Dec-POMDPs up to date define state-dependent reward functions of the 
form Rt ∶ S × A → ℝ and RT ∶ S → ℝ for time steps t = 0, 1,… , T − 1 and t = T  , respec-
tively. The Dec-�POMDP with belief-dependent reward functions as defined above gen-
eralizes a Dec-POMDP with state-dependent rewards. The standard Dec-POMDP with a 
state-dependent reward function is recovered by choosing the belief-dependent reward to 

1 We denote by �(S) the space of probability mass functions over S.
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equal the expected state-dependent reward, that is, �t(b, a) ∶= �s∼b[Rt(s, a)] . We choose the 
symbol �t for belief-dependent rewards to distinguish from state-dependent reward func-
tions and to be consistent with  [3] that in part inspired this work.

The Dec-POMDP starts from some state s0 ∼ b0 . Each agent i ∈ I then selects a local 
action a0

i
 , and the joint action a0 = (a0

1
,… , a0

n
) is executed. The time step is incremented, 

and the state transitions according to Ps , and each agent perceives a local observation z1
i
 , 

where the likelihood of the joint observation z1 = (z1
1
,… , z1

n
) is determined according to 

Pz . The action selection and observation process repeats similarly until t = T  when the task 
ends.

Optimally solving a Dec-POMDP means to design a policy for each agent that encodes 
which action the agent should execute conditional on its past observations and actions; in 
a manner such that the expected sum of rewards collected is maximized. In the following, 
we make the notion of a policy exact, and determine the expected sum of rewards collected 
when executing a policy.

3.1  Histories and policies

At any time step while the agents are executing actions in a Dec-POMDP, each agent only 
has knowledge of its own past local actions and observations and the initial state distribu-
tion b0 . Each agent may decide on its next local action based on this knowledge. We for-
malize the information available to agent i at time t as a local history. At the starting time 
t = 0 the information available to any agent i is completely described by a local history 
h0
i
= b0 . On subsequent time steps t ≥ 1 , the local history ht

i
 of any agent i belongs to the 

local history set

Analogously, we define the joint history set 
Ht = {(b0, a0, z1,… , at−1, zt) ∣ ∀k ∶ ak ∈ A, zk ∈ Z} for joint actions and observa-
tions. Given a joint history ht , we may view its composite local histories as the tuple 
(ht

1
,… , ht

n
) , or vice versa. Both the local and joint histories satisfy the recursion of the 

form ht = (ht−1, at−1, zt).
In general, a local policy for agent i is a set of mappings Ht

i
↦ Ai , one for every 

t = 0, 1,… , T − 1 . Such a local policy determines the next action the agent should take 
conditional on any possible local history up to the current time. The fact that local policies 
only depend on an agent’s local actions and observations is a key feature of Dec-POMDPs 
which ensures that an agent can execute its local policy in a decentralized manner, without 
knowledge about the other agents’ actions and observations. A solution of a Dec-POMDP 
is in turn a joint policy, which is the collection of all agents’ local policies. An optimal 
solution is a joint policy that maximizes the expected sum of rewards obtained when each 
agents acts according to its local policy contained in the joint policy.

We define a local policy as a particular kind of finite state controller (FSC) following  
[42]. This choice allows a compact representation of policies by viewing them as FSCs 
with few nodes. Furthermore, as we will argue later, increasing the number of nodes allows 
retaining the generality of the definition given in the paragraph above.

Ht
i
= {(b0, a0

i
, z1

i
,… , at−1

i
, zt

i
) ∣ ∀k ∶ ak

i
∈ Ai, z

k
i
∈ Zi}.
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Definition 1 (Local policy) For agent i, a local policy is �i = (Qi, qi,0, �i, �i) , where Qi 
is a finite set of nodes, qi,0 ∈ Qi is a starting node, �i ∶ Qi → Ai is an output function that 
determines which action to take, and �i ∶ Qi × Zi → Qi is a node transition function that 
determines the next node conditional on the last observation.

This definition coincides with that of a Moore machine   [31]. Another useful way to 
view a local policy is as a directed acyclic graph, where policy execution is equivalent to 
graph traversal starting from the specified starting node. Figure  2 shows an example of 
such a local policy graph, along with a description of how the local policy is executed. The 
depicted local policy is suitable for a problem with a horizon T = 3.

An arbitrary node may be reached by zero (in case the node has no in-edges), one, or 
more than one local histories. This will be important in our subsequent analysis of the 
problem and the proposed solution algorithm. For example, in the case of Fig.  2, node 
qi,3 is reachable by three local histories, namely (b0, ai,0, zi,0, ai,1, zi,0) , (b0, ai,0, zi,0, ai,1, zi,1) , 
and (b0, ai,0, zi,1, ai,2, zi,1) . The first two of these local histories traverse through the nodes 
qi,0 → qi,1 → qi,3 , while the last local history traverses through nodes qi,0 → qi,2 → qi,3 . 
Although the local histories are different, the action to be taken next after experiencing 
them is the same, �i(qi,3) = ai,1.

Next, we formally define the concept of a joint policy that is a collection of each agent’s 
local policies.

Definition 2 (Joint policy) Given local policies �i = (Qi , qi,0 , �i , �i) for all agents 
i ∈ I , the corresponding joint policy is the tuple � = (Q, q0, � , �) , where Q is the Car-
tesian product of all Qi , q0 = (q1,0,… , qn,0) ∈ Q is the initial node, and for an arbitrary 
joint policy node q = (q1,… , qn) ∈ Q and joint observation z = (z1,… , zn) ∈ Z , the 
output function � ∶ Q → A determines the joint action to take in a node according to 
�(q) = (�1(q1),… , �n(qn)) , and the node transition function � ∶ Q × Z → Q is defined such 
that �(q, z) = (�1(q1, z1),… , �n(qn, zn)).

qi,0

Q0
i

qi,1

qi,2

Q1
i

qi,3

qi,4

Q2
i

zi,0

zi,1

zi,0

zi,1

zi,0

zi,1

Node qi Action γi(qi)

qi,0 ai,0
qi,1 ai,1
qi,2 ai,2
qi,3 ai,1
qi,4 ai,0

Fig. 2  A local policy �i = (Qi, qi,0, �i, �i) for agent i with local action space Ai = {ai,0, ai,1, ai,2} and local 
observation space Zi = {zi,0, zi,1} represented as a directed acyclic graph. The shaded circles show the set 
of nodes Qi , the starting node is qi,0 . The dashed boxes indicate the subsets Qt

i
⊂ Qi of nodes reachable at 

time t. The table on the right shows the output function �i that determines the action to take in any node. 
The node transition function �i is indicated by the out-edges from each node: for example, �i(qi,0, zi,0) = qi,1 . 
Execution of the policy is equivalent to traversal of the graph starting from the initial node, taking actions 
indicated by �i , and transitioning to the next node conditional on the next observation according to �i
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Figure  3 shows an example of a joint policy constructed from two local policies 
using the definition above. The nodes q ∈ Q in the joint policy graph are tuples of nodes 
in the local policy graphs: Q = Q1 × Q2 . For example, the node q = (q1,3, q2,3) indicates 
that both agents i are currently executing their respective local policies �i at node qi,3 . 
The dashed boxes indicate the subsets Qt ⊂ Q of nodes reachable at time t. The node 
output function � and node transition function � of the joint policy are constructed from 
the corresponding function �i and �i of the local policies, respectively, as described in 
Definition 2. From each node q ∈ Q , there is now an out edge for each joint observa-
tion z ∈ Z . As is the case for local policies, also in a joint policy a given node may be 
reached by zero, one, or more than one joint history. Since a joint policy is constructed 
from local policies that are decentrally executable, the joint policy is also decentrally 
executable.

The generality of the policy representation is maintained, as any finite horizon local 
policy can be represented by a local policy graph with sufficiently many nodes. If the size 
of the local policy graph is grown sufficiently a graph where each node is reachable by a 
single unique local history can be created. Such a policy graph is in fact a tree and can 
represent any possible mapping from local histories to local actions and thus any possible 
local policy. A joint policy composed of such trees is a so-called pure deterministic policy 
for a Dec-POMDP in the sense that an agent’s local observation history is sufficient to 
determine the agent’s next action. It is known that there exists an optimal pure policy in 

(q1,0, q2,0)

Q0

(q1,1, q2,1)

(q1,1, q2,2)

(q1,2, q2,1)

(q1,2, q2,2)

Q1

(q1,3, q2,3)

(q1,3, q2,4)

(q1,4, q2,3)

(q1,4, q2,4)

Q2

(z1,0, z2,0)

(z1,0, z2,1)

(z1,1, z2,0)

(z1,1, z2,1)

(·, ·)

(·, z2,0)

(·, z2,1)

(z1,1, ·)

(z1,0, ·)

(z1,1, z2,1)

(z1,0, z2,1)

(z1,0, z2,0)

(z1,1, z2,0)

Fig. 3  A joint policy � = (Q, q0, � , �) composed of two local policies �1 and �2 that are identical to the 
one shown in Fig. 2. For clarity, we denote existence of parallel edges by single edges with labels such as 
(⋅, z2,1) , which indicates there are parallel edges for joint observations where the local observation of agent 1 
can assume any value, and the local observation of agent 2 is z2,1
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every Dec-POMDP   [40]. Since a tree can represent an optimal policy, the policy graph 
representation we choose can also represent an optimal policy given enough nodes. Con-
sequently, our main theoretical results hold in the general case, and are not limited to our 
particular policy representation. Our emphasis in this paper is on compact local policies 
that are not trees and are not guaranteed to be able to represent an optimal policy. We refer 
the reader to  [40] for further discussion of possible types of policies for Dec-POMDPs.

To close this subsection, we give a technical condition for policy graphs that constrains the 
structure of local policies. The condition, called temporal consistency, ensures that each node 
can be identified with a unique time step.

Definition 3 (Temporal consistency) A local policy �i = (Qi , qi,0 , �i , �i) is temporally 
consistent if there exists a partition Qi =

⋃T−1

t=0
Qt

i
 where Qt

i
 are pairwise disjoint and non-

empty, Q0
i
= {qi,0} , and for any t = 0,… , T − 2 , for qt

i
∈ Qt

i
 , for all zi ∈ Zi , �i(qti, zi) ∈ Qt+1

i
.

In a temporally consistent policy, at a node in Qt
i
 the agent has (T − t) decisions left until 

the end of the problem horizon. Temporal consistency guarantees that exactly one node in 
each set Qt

i
 can be visited, and that after visiting a node in Qt

i
 , the next node will belong to 

Qt+1
i

 . Temporal consistency naturally extends to joint policies, such that there exists a parti-
tion of Q by pairwise disjoint sets Qt . In Figs. 2 and 3, the sets Qt

i
 and Qt are indicated by the 

dashed boxes. Throughout the rest of the article, we assume temporal consistency holds for 
all policies. The assumption of temporal consistency does not restrict our proposed method, it 
merely allows us to refer to a subset of nodes reachable at a particular time step.

3.2  Bayes filter

While planning policies for information gathering, it is useful to reason about the joint belief 
of the agents given some joint history. This can be done via recursive Bayesian filtering, see  
[44] for a general overview of the topic. Recursive Bayesian filtering is a process by which the 
probability mass function over the hidden state of the system is estimated given a joint history 
and the state transition and observation probability models of the Dec-POMDP. Recall that 
during policy execution agents only perceive their own local actions and observations. Thus, 
Bayesian filtering typically cannot be achieved online by an individual agent as it lacks the 
necessary information. However, if the local policies of each agent are planned centrally as is 
the usual case in Dec-POMDPs, Bayesian filtering may be applied during planning to reason 
about the possible joint beliefs the system may reach.

We now describe the discrete Bayesian filter we use to track the joint belief. The initial 
joint belief b0 is a function of the state at time t = 0 , and for any state s0 ∈ S , b0(s0) is equal to 
the probability P(s0 ∣ h0) . When a joint action a0 is executed and a joint observation z1 is per-
ceived, we find the posterior belief P(s1 ∣ h1) where h1 = (h0, a0, z1) applying a Bayes filter. 
For notational convenience, we drop the explicit dependence of bt on the joint history in the 
following. In general, given any current joint belief bt corresponding to some joint history ht , 
and a joint action at and joint observation zt+1 , the posterior joint belief is calculated by

(1)bt+1(st+1) =

Pz(zt+1 ∣ st+1, at)
∑
st∈S

Ps(st+1 ∣ at, st)bt(st)

�(zt+1 ∣ bt, at)
,
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where

is the normalization factor equal to the prior probability of observing zt+1 . Given b0 and 
any joint history ht = (b0,a0,z1 , … , at−1 , zt) , repeatedly applying Eq. (1) yields a sequence 
b0, b1,… , bt of joint beliefs. We shall denote the application of the Bayes filter (Eq. (1)) by 
the shorthand notation

Furthermore, we shall denote the filter that recovers bt given ht by repeated application of � 
by a function � ∶ Ht

→ �(S) , that is,

The innermost application of � recovers b1 given b0 , a0 , and z1 . The output is the input to 
the next application of � together with a1 and z2 . This process is repeated until the tth appli-
cation of � which outputs bt.

3.3  Value of a policy

The value of a joint policy � = (Q, q0, � , �) is equal to the expected sum of rewards col-
lected when acting according to the policy, starting from the initial joint belief. To 
characterize the value of a policy, we define value functions V�

t
∶ �(S) × Qt

→ ℝ for 
t = T , T − 1,… , 0 using a backwards in time dynamic programming principle. Each 
V�
t
(b, q) gives the expected sum of rewards when following policy � until the end of the 

horizon when t decisions have been taken so far, for any joint belief b ∈ �(S) and any pol-
icy node q ∈ Qt . Then, V�

0
(b0, q0) is the value of the policy.

We start with time step t = T  which is a special case when all actions have already 
been taken, and the value function only depends on the joint belief and is equal to the final 
reward: VT (b) = �T (b).

For t = T − 1 , one decision remains, and the remaining expected sum of rewards of exe-
cuting policy � is equal to

that is, the sum of the immediate reward and the expected final reward at time T. From 
above, we define V�

t
 iterating backwards in time for t = T − 2,… , 0 as

The objective is to find an optimal policy �∗ ∈ argmax
�

V�
0
(b0, q0) whose value is greater 

than or equal to the value of any other policy.

(2)�(zt+1 ∣ bt, at) =
∑
st+1∈S

Pz(zt+1 ∣ st+1, at)
∑
st∈S

Ps(st+1 ∣ at, st)bt(st)

(3)bt+1 = � (bt, at, zt+1).

(4)
bt = �(ht) = � (� (… � (�

⏟⏞⏞⏞⏟⏞⏞⏞⏟
t times

(b0, a0, z1), a1, z2)…)).

(5)V�

T−1
(b, q) = �T−1(b, �(q)) +

∑
z∈Z

�(z ∣ b, �(q))VT (� (b, �(q), z)),

(6)V�

t
(b, q) = �t(b, �(q)) +

∑
z∈Z

�(z ∣ b, �(q))V�

t+1
(� (b, �(q), z), �(q, z)).
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4  Value of a policy node

Executing a policy corresponds to a stochastic traversal of the policy graphs (Fig. 2) condi-
tional on the observations perceived. In this section, we first answer two questions related to 
this traversal process. First, given a history, when is it consistent with a policy, and which 
nodes in the policy graph will be traversed (Sect. 4.1)? Second, given an initial state distribu-
tion, what is the probability of reaching a given policy graph node, and what are the relative 
likelihoods of histories if we assume a given node is reached (Sect. 4.2)? With the above ques-
tions answered, we define the value of a policy graph node both in a joint and in a local policy 
(Sect. 4.3). These values will be useful in designing a policy improvement algorithm for Dec-
POMDPs. Probabilities of joint histories conditioned on the local information of one agent 
have been derived earlier for reasoning what one agent can know about the experiences of 
other agents  [33]. Oliehoek  [35] introduces plan-time sufficient statistics describing the joint 
distribution over hidden states and joint observation histories. Our derivation here is methodo-
logically similar, but we consider explicitly the setting where a policy is represented as a graph 
and reason about reachability probability of a policy graph node that summarizes multiple 
joint histories, rather than the reachability probability of a particular joint history.

4.1  History consistency

A history is consistent with a policy when executing the policy could have resulted in the 
given history. In the context of policy graphs defined in Sect. 3.1, consistency means that the 
actions in the history are equal to those that would be taken by the policy conditional on the 
observations in the history.

Definition 4 (History consistency) We are given for all i ∈ I the local policy �i = (Qi,qi,0
,�i,�i) , and the corresponding joint policy � = (Q,q0,�,�) . 

1. A local history ht
i
= (b0, a

0
i
, z1

i
,… , at−1

i
, zt

i
) is consistent with � if the sequence of nodes 

(q0
i
, q1

i
,… , qt

i
) where q0

i
= qi,0 is the initial node and qk

i
= �i(q

k−1
i

, zk
i
) for k = 1,… , t 

satisfies: ak
i
= �i(q

k
i
) for every k. We say ht

i
 ends at qt

i
∈ Qt

i
 under �.

2. A joint history ht = (ht
1
,… , ht

n
) is consistent with � if for all i ∈ I , ht

i
 is consistent with 

� and ends at qt
i
 . We say ht ends at qt = (qt

1
,… , qt

n
) ∈ Qt under �.

Due to temporal consistency, any ht
i
∈ Ht

i
 consistent with a policy will end at some qt

i
∈ Qt

i
 . 

Similarly, any ht ∈ Ht ends at some qt ∈ Qt.

4.2  Node reachability probabilities

Above, we have defined when a history ends at a particular node. Using this definition, we 
now derive the joint probability mass function (pmf) P(qt, ht ∣ �) of policy nodes and joint 
histories given that a particular policy � is executed.

We note that P(qt, ht ∣ �) = P(qt ∣ ht,�)P(ht ∣ �) and first consider P(ht ∣ �) . The 
unconditional a priori probability of experiencing the joint history h0 = (b0) is P(h0) = 1 . 
For t ≥ 1 , the unconditional probability of experiencing ht is obtained recursively by 
P(ht) = �(zt ∣ �(ht−1), at−1)P(ht−1) . Conditioning P(ht) on a policy yields P(ht ∣ �) = P(ht) if 
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ht is consistent with � and 0 otherwise. Next, we have P(qt ∣ ht,�) =
∏

i∈I P(q
t
i
∣ ht

i
,�) , with 

P(qt
i
∣ ht

i
,�) = 1 if ht

i
 ends at qt

i
 under � and 0 otherwise.

Combining the above, the joint pmf is defined as

Marginalizing over ht , the probability of ending at node qt under � is

and by definition of conditional probability,

We now find the probability of ending at qt
i
 under � . Let Qt

−i
 denote the Cartesian prod-

uct of all Qt
j
 except Qt

i
 , that is,

Then qt
−i

∈ Qt
−i

 denotes the nodes for all agents except i. We have (qt
−i
, qt

i
) ∈ Qt . The prob-

ability of ending at qt
i
 under � is

where the sum terms are determined by Eq.  (7). Again, by definition of conditional 
probability,

where the term in the numerator is obtained from Eq. (7).

4.3  Value of policy nodes

We define the values of a node in a joint policy and an individual policy.

Definition 5 (Value of a joint policy node) Given a joint policy � = (Q, q0, � , �) , the 
value of a node qt ∈ Qt is defined as

where P(ht ∣ qt,�) is defined in Eq. (8) and �(ht) is the joint belief corresponding to history 
ht as given in Eq. (4).

P(qt, ht ∣ �) =

{
P(ht) if ht ends at qt under �

0 otherwise
.

(7)P(qt ∣ �) =
∑
ht∈Ht

P(qt, ht ∣ �),

(8)P(ht ∣ qt,�) =
P(qt, ht ∣ �)

P(qt ∣ �)
.

Qt
−i

=
∏
j ∈ I

j ≠ i

Qt
j
.

(9)P(qt
i
∣ �) =

∑
qt
−i
∈Qt

−i

P
(
(qt

−i
, qt

i
) ∣ �

)
,

(10)P(qt
−i

∣ qt
i
,�) =

P
(
(qt

−i
, qt

i
) ∣ �

)
P(qt

i
∣ �)

,

V�

t
(qt) =

∑
ht∈Ht

P(ht ∣ qt,�)V�

t
(�(ht), qt),



 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 18 of 44

To give intuition about the definition above, consider the joint policy � in Fig. 3, and 
suppose qt = (q1,3, q2,4) . This node can be reached by three joint histories that correspond 
to the following three sequences of joint observations, listed as tuples of local observa-
tions: 

(
(z1,0, z2,1), (z1,0, z2,0)

)
 , 
(
(z1,0, z2,1), (z1,1, z2,0)

)
 , and 

(
(z1,1, z2,1), (z1,1, z2,0)

)
 . Note that the 

out-edge of qt labeled with (⋅, z2,0) corresponds to two joint observations as described in the 
figure caption. The probabilities of joint histories are quantified by P(ht ∣ qt,�) , which can 
be computed as outlined in Sect. 4.2. This probability can be non-zero only for the three 
joint histories that end in qt . The value of the node, V�

t
(qt) is obtained by taking the expec-

tation of V�
t
(�(ht), qt) under the pmf of histories.

Another example for an arbitrary node qt of a policy � is shown in Fig.  4. Here, the 
horizontal axis indicates the joint belief state in a Dec-POMDP with two underlying hid-
den states. The joint belief in this case is represented by a single real number denoting 
the probability of the first of these two states. The red curve depicts the value function 
V�
t
(bt, qt) of the policy. The blue circle markers corresponding to the blue right-hand ver-

tical axis depict the pmf P(ht ∣ qt,�) of histories at the node. The value V�
t
(qt) above is 

defined as the expectation of the value function (red curve) under the pmf of histories (blue 
circle markers).

Definition 6 (Value of a local policy node) For i ∈ I , let �i = (Qi, qi,0, �i, �i) be the local 
policy and let � = (Q, q0, � , �) be the corresponding joint policy. For any i ∈ I , the value of 
a local node qt

i
∈ Qt

i
 is
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Fig. 4  An example of the value function of a node and its lower bound. The horizontal axis denotes the 
joint belief in a two-state Dec-POMDP as a real number indicating the probability of the first state. On the 
red left-hand vertical axis the value function V�

t
(bt , qt) of the policy is drawn as a convex function of the 

joint belief. The blue right-hand vertical axis denotes the probability of joint histories, and the three lines 
with blue circle markers denote an example of a distribution P(ht ∣ qt ,�) of joint belief states at a joint 
policy graph node. The exact value V�

t
(qt) of the node is calculated as the expectation of the value function 

V�
t
(bt , qt) under P(ht ∣ qt ,�) . A lower bound for the value of the node is found by instead taking the value 

function at the expected joint belief state as indicated by the dashed lines
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where P(qt
−i

∣ qt
i
, �) is defined in Eq. (10).

The value of a local node qt
i
 is equal to the expected value of the joint node (qt

−i
, qt

i
) 

under qt
−i

∼ P(qt
−i

∣ qt
i
,�) . Suppose we wish to quantify the value of a local node qt

i
 

of agent i. From the perspective of agent i, it is not aware of which local policy nodes 
the other agents in their respective local policies are located at. However, since agent i 
is aware of the local policies of all agents, it can deduce which local policy nodes are 
possible for the other agents. These are the local policy nodes of agents other than i 
at the same time step as qt

i
 , that is, the nodes in Qt

−i
 . As an example, consider the case 

depicted in Fig.  3 and suppose we wish to compute the value of qt
1
= q1,3 for agent 1. 

The second agent’s node qt
2
 belongs to Qt

2
= {q2,3, q2,4} . The probability of the sec-

ond agent being in either of these two nodes is obtained from P(qt
2
∣ qt

1
,�) as outlined 

in Sect.  4.2. According to the definition above, the value of q1,3 is then computed as 
P(q2,3 ∣ q1,3,�)V

�
t
((q1,3, q2,3)) + P(q2,4 ∣ q1,3,�)V

�
t
((q1,3, q2,4)).

5  Convex‑reward Dec‑POMDPs

In this section, we prove several results for the value function of a Dec-POMDP whose 
reward function is convex in �(S) . Convex rewards are of special interest in information 
gathering. This is because of their connection to so-called uncertainty functions   [13], 
which are non-negative functions concave in �(S) . Informally, an uncertainty function 
assigns large values to uncertain beliefs, and smaller values to less uncertain beliefs. Nega-
tive uncertainty functions are convex and assign high values to less uncertain beliefs, and 
are suitable as reward functions for information gathering. Examples of uncertainty func-
tions include Shannon entropy, generalizations such as Rényi entropy, and types of value of 
information, for example, the probability of error in hypothesis testing.

The following theorem shows that if the immediate reward functions are convex in the 
joint belief, then the finite horizon value function of any policy is convex in the joint belief.

Theorem 1 If the reward functions �T ∶ �(S) → ℝ and �t ∶ �(S) × A → ℝ are convex in 
�(S), then for any policy � , VT ∶ �(S) → ℝ is convex and V�

t
∶ �(S) × Qt

→ ℝ is convex in 
�(S) for any t.

Proof Let � = (Q, q0, � , �) , and b ∈ �(S) . We proceed by induction ( VT (b) = �T (b) is triv-
ial). For t = T − 1 , let qT−1 ∈ QT−1 , and denote by a ∶= �(qT−1) the joint action taken 
according to � at this node. From Eq.  (5), 
V�
T−1

(b, qT−1) = �T−1(b, a) +
∑
z∈Z

�(z ∣ b, a)VT (� (b, a, z)) . We recall from above that VT is 

convex, and by Eq. (1), the Bayes filter � (b, a, z) is a linear function of b. The composition 
of a linear and convex function is convex, so VT (� (b, a, z)) is a convex function of b. The 
non-negative weighted sum of convex functions is also convex, and by assumption �T−1 is 
convex in �(S) , from which it follows that V�

T−1
 is convex in �(S).

V�

t
(qt

i
) =

∑
qt
−i
∈Qt

−i

P(qt
−i

∣ qt
i
,�)V�

t

(
(qt

−i
, qt

i
)
)
,
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Now assume V�
t+1

 is convex in �(S) for some 0 ≤ t ≤ T − 1 . By the definition in Eq. (6) 
and the same argumentation as above, it follows that V�

t
 is convex in �(S).  ◻

Since a sufficiently large policy graph can represent any policy, we conclude that the 
value function of an optimal policy is convex in a Dec-POMDP with a reward function 
convex in the joint belief.

The following corollary gives a lower bound for the value of a policy graph node.

Corollary 1 Let gt ∶ Ht
→ [0, 1] be a probability mass function over the joint histories at 

time t. If the reward functions �T ∶ �(S) → ℝ and �t ∶ �(S) × A → ℝ are convex in �(S), 
then for any time step t, and for any policy � and qt ∈ Qt,

Proof By Theorem 1, V�
t
∶ �(S) × Qt

→ ℝ is convex in �(S) . The claim immediately fol-
lows applying Jensen’s inequality.  ◻

Applied to Definition 5, the corollary says the value of a joint policy node qt is lower 
bounded by the value of the expected joint belief at qt . An illustration of this lower bound 
is shown by the dashed lines in Fig. 4. Applied to Definition 6, we obtain a lower bound for 
the value of a local policy node qt

i
 as

where inside the inner expectation we write (qt
−i
, qt

i
) = qt . A lower bound for the value of 

any local node qt
i
∈ Qt

i
 is found by finding the values V�

t
(qt) of all joint nodes qt ∈ Qt and 

then taking the expectation of V�
t
(qt) where qt = (qt

−i
, qt

i
) under P(qt

−i
∣ qt

i
, �).

As Corollary 1 holds for any pmf over joint histories, it could be applied also with pmfs 
other than P(ht ∣ qt,�) . For example, if it is expensive to enumerate the possible histories 
and beliefs at a node, one could approximate the lower bound through importance sam-
pling  [32, Ch. 23.4].

Since a linear function is both convex and concave, rewards that are state-dependent and 
rewards that are convex in the joint belief can be combined on different time steps in one 
Dec-POMDP and the lower bound still holds.

In standard Dec-POMDPs, the expected reward is a linear function of the joint belief. 
Then, Corollary 1 holds with equality, as shown by the following.

Corollary 2 Consider a Dec-POMDP where the reward functions are defined as 
�T (b) =

∑
s∈S

b(s)RT (s) where RT ∶ S → ℝ is a state-dependent final reward function, and for 

t = 0, 1,… , T − 1 , �t(b, a) =
∑
s∈S

b(s)Rt(s, a), where Rt ∶ S × A → ℝ are the state-dependent 

reward functions. Then, the conclusion of Corollary 1 holds with equality.

Proof Let � = (Q, q0, � , �) and b ∈ �(S) . First note that VT (b) = �T (b) =
∑
s∈S

b(s)RT (s) . 

Consider then t = T − 1 , and let qT−1 ∈ QT−1 , and write a ∶= �(qT−1) . Then from the defi-
nition of V�

T−1
 in Eq. (5), consider first the latter sum term which equals

�ht∼g(ht)

[
V�

t
(�(ht), qt)

]
≥ V�

t

(
�ht∼g(ht)

[
�(ht)

]
, qt

)
.

V�

t
(qt

i
) ≥ �qt

−i
∼P(qt

−i
∣qt

i
,�)

[
V�

t

(
�ht∼P(ht ∣qt ,�)

[
�(ht)

]
, qt

)]
,
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which follows by replacing � (b, a, z) by Eq. (1), canceling out �(z ∣ b, a) , and rearranging 
the sums. The above is clearly a linear function of b, and by definition, so is �t , the first part 
of V�

T−1
 . Thus, V�

T−1
∶ �(S) × QT−1

→ ℝ is linear in �(S) . By an induction argument, it is 
now straightforward to show that V�

t
 is linear in �(S) for t = 0, 1,… , T − 1 . Finally,

for any pmf g over joint histories by linearity of expectation.   ◻

Corollary  1 indicates that the value of a node is lower bounded by the value of the 
expected joint belief in the node. This result has applications in policy improvement algo-
rithms that iteratively improve the value of a policy by modifying the output and node 
transition functions at each local policy node. Instead of directly optimizing the value of 
a node, the lower bound can be optimized. We present one such algorithm in the next sec-
tion. As shown by Corollary 2, such an algorithm will also work for Dec-POMDPs with a 
state-dependent reward function.

6  The nonlinear policy graph improvement algorithm

The Policy Graph Improvement (PGI) algorithm   [42] was originally introduced for 
Dec-POMDPs with a standard state-dependent reward function that is linear in the joint 
belief. PGI monotonically improves policies by locally modifying the output and node 
transition functions of the individual agents’ policies. The policy size is fixed, such that 
the worst case computation time for an improvement iteration is known in advance. 
Moreover, due to the limited size of the policies the method produces compact, under-
standable policies.

We extend PGI to the non-linear reward case, and call the method non-linear PGI 
(NPGI). Contrary to tree based Dec-POMDP approaches the policy does not grow double-
exponentially with the planning horizon as we use a fixed size policy. NPGI may improve 
the lower bound of the values of nodes (Corollary 1). The lower bound is tight when each 
policy graph node corresponds to only one history suggesting we can improve the quality 
of the lower bound by increasing policy graph size.

NPGI is shown in Algorithm  1. At each improvement step, NPGI repeats two 
steps: the forward pass and the backward pass. In the forward pass, the current best 
joint policy is applied to find the set B of expected joint beliefs at every policy graph 
node. In the backward pass, we iterate over all local policy graph nodes optimizing the 
policy parameters for each of them, that is, the output function and the node transi-
tion function. As output from the backward pass, we obtain an updated policy �+ using 
the improved output and node transition functions �+ and �+ , respectively. As NPGI 

∑
z∈Z

�(z ∣ b, a)
∑
s�∈S

� (b, a, z)(s�)RT (s
�)

=
∑
s�∈S

[∑
z∈Z

∑
s∈S

Pz(z ∣ s�, a)Ps(s� ∣ a, s)b(s)

]
RT (s

�)

�ht∼g(ht)

[
V�

t
(�(ht), qt)

]
= V�

t

(
�ht∼g(ht)

[
�(ht)

]
, qt

)
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optimizes a lower bound of the node values, we finally check if the expected sum of 
rewards for the improved policy, V�+

0
(b0, q0) , is greater than the value of the current best 

policy, and update the best policy if necessary. Similarly as PGI, NPGI is an anytime 
algorithm. It may be terminated at any point in time, and the best joint policy recovered 
so far may be returned.

In the following, we first give details of the forward pass. Then, we discuss in detail the 
most important part of the algorithm, the so-called backward pass. Finally, we close the 
section with a discussion of some implementation details.

6.1  The forward pass

Given a joint policy � = (Q, q0, � , �) and an initial joint belief b0 , the forward pass cal-
culates the set B = {bq ∣ q ∈ Q} of expected beliefs bq for each of the joint policy graph 
nodes q. We implement the forward pass in two stages, first enumerating the local and joint 
histories, and then applying the Bayes filter to find the corresponding belief states along 
with their relative likelihoods.

From the local policy graphs �i = (Qi, qi,0, �i, �i) of each agent i (see Fig. 2), we first 
enumerate the sets of local histories ending at each of the nodes qi ∈ Qi . This corresponds 
to enumeration of all paths in the graph �i . Next, for a given joint policy graph node 
q = (q1,… , qn) ∈ Q , we look up the set of local histories for each qi . The set of joint histo-
ries at q is then obtained by enumerating all combinations of local histories. That is, if 
there are mi local histories that end at qi , there are 

n∏
i=1

mi unique combinations of local histo-

ries, each of which corresponds to one joint history that ends at q.
Now we have enumerated the set of joint histories that ends at q. Recursively using 

the Bayes filter, Eq. (4), we obtain for each joint history h a corresponding belief state 
�(h) . As described in Sect.  4.2, we also obtain the relative likelihoods P(h ∣ q,�) of 
the joint histories. The expected belief state at q is then obtained by 
bq =

∑
h

P(h ∣ q,�)�(h).
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6.2  The backward pass

We denote the improved joint policy as �+ = (Q, q0, �
+, �+) . The parameters �+ and �+ of 

this policy will be incrementally updated throughout the backward pass. This is done by 
iterating over all nodes in the local policy graphs, and solving optimization problems to 
maximize the node values. The maximization is done over possible values of the output 
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function and node transition function at the node. At time step t for agent i, for each node 
qt
i
∈ Qt

i
 , we maximize either the value V�+

t
(qt

i
) or its lower bound with respect to the local 

policy parameters. In the following, we present the details for maximizing the lower bound. 
The algorithm for the exact value can be derived analogously, then we store all belief states 
possible at a node q ∈ Q instead of the expected belief in the forward pass.

The backward pass of NPGI is shown in Algorithm  2. We first consider time step 
t = T − 1 . We loop over each agent i ∈ I , and over each local policy graph node qT−1

i
 . Since 

after this step no subsequent actions will be taken, we find an optimal local action and 
assign it to �+

i
(qT−1

i
) . An optimal local action is such that it maximizes the sum of the 

expected immediate and final reward. For clarity, in the following we drop explicit nota-
tions of the time step from the notation of beliefs, policy graph nodes, actions, and obser-
vations. Recall that P(q−i ∣ qi,�) gives the pmf over the local policy graph nodes of agents 
other than i. To simplify notation, we use the shorthand b−i for the expected joint belief at a 
joint policy graph node q =

(
qi, q−i

)
 . Finally, we write a = (�+

1
(q1) , … , ai , … , �+

n
(qn)) as the 

joint action where local actions of all other agents except i are fixed to those specified by 
the current output function �+ . We solve

and assign �+
i
(qi) equal to the local action that maximizes Eq. (11).

Next, consider time step t ≤ T − 1 . There are now actions remaining after the current 
one, so we consider both the current local action and which node to traverse to next via 
the node transition function. We find an optimal local action and assign it to �+

i
(qt

i
) , and 

find an optimal configuration for out edges of qt
i
 and assign values of �i(qti, zi) accordingly 

for each zi ∈ Zi . As earlier, we shall drop all explicit notations of the time step for clarity. 
We use the same notation for b−i and a as above. Additionally, for any joint observation 
z = (z1,… , zn) ∈ Z , define

as the next joint policy node to transition to when the transitions of all other agents except i 
are fixed to those specified by �+ , and agent i transitions to qzi

i
 . We solve

and assign �+
i
(qi) and �+

i
(qi, ⋅) to their respective maximizing values.

Line 13 of Algorithm 2 checks if there exists a node wt
i
 that we have already optimized 

that has the same local policy as the current node qt
i
 . If such a node exists, we redirect all of 

the in-edges of qt
i
 to wt

i
 to avoid having nodes with identical local policies. The redirection 

may change the expected beliefs at the nodes at time steps t, t + 1,… , T − 1 . To ensure that 
the expected joint beliefs and node reachability probabilities remain valid, we recompute 
the forward pass (Line 16).

If we redirect the in-edges of qt
i
 to wt

i
 , on Line  15 we randomize the local policy of 

the now useless node qt
i
 that has no in-edges, in the hopes that it may be improved on 

(11)max
ai∈Ai

∑
q−i∈Q−i

P(q−i ∣ qi,�)

[
�T−1(b−i, a) +

∑
z∈Z

�(z ∣ b−i, a)VT (� (b−i, a, z))

]

f (z) =
(
�+
1
(q1, z1),… , q

zi
i
,… , �+

n
(qn, zn)

)

(12)

max
ai ∈ Ai

∀zi ∈ Zi ∶ q
zi
i
∈ Qi

∑
q−i∈Q−i

P(q−i ∣ qi,�)⋅

[
�t
(
b−i, a

)
+
∑
z∈Z

�(z ∣ b−i, a)V
�+

t+1

(
� (b−i, a, z), f (z)

)]
,



Autonomous Agents and Multi-Agent Systems (2020) 34:42 

1 3

Page 25 of 44 42

subsequent backward passes. To randomize the local policy of a node qt
i
∈ Qt

i
 , we sample 

new local policies until we find one that is not identical to the local policy of any other 
node in Qt

i
 . Likewise, when randomly initializing a new policy in our experiments we avoid 

including in any Qt
i
 nodes with identical local policies.

In Algorithm 2 the loop at Line 7 may sometimes encounter a node qt
i
 that is unreach-

able. That is, there are no in-edges to qt
i
 , or the probability of every joint history ending at 

qt
i
 is equal to zero. In such cases, we randomize the local policy at qt

i
 by calling the subrou-

tine RANDOMIZE on it.

6.3  Computational complexity

We next derive the computational complexity of one improvement iteration for NPGI 
(Algorithm 1) when using the lower bound. We first consider the forward pass. The for-
ward pass requires computation of all joint belief states reachable over the horizon of T 
decisions under the current joint policy � . For any history of past joint actions and observa-
tions, the joint policy � always specifies a single joint action to take. Therefore, the number 
of possible joint belief states at each time step increases by a factor of |Z|. The number of 
joint belief states evaluated in the forward pass is O(|Z|T ).

The backward pass (Algorithm 2) iterates over all T time steps, and all of the n agents. 
For each agent i, all its controller nodes Qi are iterated over. There are a total of m =

n∑
i=1

�Qi� 
controller nodes. There are Tnm iterations, and in the worst case at each iteration the opti-
mization problem from Eq. (12) is solved.

To determine the complexity of solving Eq. (12), we determine the size of the feasible 
set of the optimization problem. At any node qi , we may set the output function �i(qi) to 
equal any of the |Ai| local actions. Likewise, the node transition function �i(qi, ⋅) for any of 
the |Zi| possible local observations may be set to equal any of the O(|Qi|) possible succes-
sor nodes. To determine the worst case complexity, let |A∗| = max

i∈I
|Ai| , |Z∗| = max

i∈I
|Zi| , and 

|Q∗| = max
i∈I

|Qi| . There are O(|A∗||Z∗||Q∗|) elements in the feasible set of Eq. (12).
To evaluate each feasible solution, a sum over the possible joint policy graph nodes q−i 

of agents other than i is computed. Each of the other agents is in one of at most |Q∗| local 
policy graph nodes. Thus, there are O(|Q∗|n−1) possible node configurations for the other 
agents. Each sum term corresponds to a joint policy graph node (qi, q−i) and is equal to the 
expected value of the node starting at its expected joint belief, weighted by the reachability 
probability of the node. The policy is executed until the end of the problem horizon. By a 
similar argument as made above for the forward pass, evaluating this value requires com-
putation of at most O(|Z|T ) joint belief states and the corresponding rewards. The reacha-
bility probabilities P(q−i ∣ qi,�) are computed and cached already during the forward pass.

In summary, the computational complexity of one iteration in the while loop of Algo-
rithm 1 is

The time complexity of an improvement step in NPGI is exponential in the number of 
agents n, the number of nodes |Q∗| in the largest local policy graph. The complexity is 
exponential in the planning horizon T, unlike tree based Dec-POMDP approaches with 
doubly-exponential complexity. The complexity is linear in the number of actions.

(13)O(|Z|T + Tnm|A∗||Z∗||Q∗||Q∗|n−1|Z|T ).
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6.4  Implementation details

We discuss how to initialize policies, and mention some techniques we use to escape 
local maxima. The source code of our implementation of NPGI is available online at 
https ://githu b.com/lauri mi/npgi.

Policy initialization. We initialize a random policy for each agent i ∈ I with a given 
policy graph width |||Qt

i

||| for each t as follows. For example, for a problem with T = 3 and 
|||Qt

i

||| = 2 , we create a policy similar to Fig. 2 for each agent, where there is one initial 
node qi,0 , and 2 nodes at each time step t ≥ 1 . The action determined by the output func-
tion �i(qi) is sampled uniformly at random from Ai . For each node qt

i
∈ Qt

i
 for 

0 ≤ t ≤ T − 1 , we sample a next node from Qt+1
i

 uniformly at random for each observa-
tion zi ∈ Zi and assign the node transition function �i(qi, zi) accordingly. At the last time 
step, it is only meaningful to have |||QT

i

||| ≤ ||Ai
|| . In our experiments if |||QT

i

||| > ||Ai
|| , we 

instead set |||QT
i

||| = ||Ai
||.

Escaping local maxima. NPGI repeats the forward and backward passes several times. 
During our experiments we observed that sometimes NPGI gets stuck in a local maxima, 
and is unable to find improved policy parameters that yield a higher value policy. To miti-
gate this, we follow the well known �-greedy approach   [51] in reinforcement learning: 
select the best action according to a specified probability, and, for exploration, select a sub-
optimal action otherwise. In practice, we added a randomization such that at each local 
node qt

i
 , with probability 0.5, instead of optimizing the policy parameters as discussed 

above we perform the following heuristic improvement step. First, we sample a single joint 
history that ends in qt

i
 . We then solve the optimization problems of Eqs. (12) for the joint 

belief that corresponds to the sample joint history. We empirically observed that this added 
randomness helped NPGI to more effectively search the space of policies and to reach 
higher quality solutions.

7  Non‑linear policy graph improvement for continuous‑state 
problems

We describe how NPGI, introduced in the previous section, can be extended to Dec-POM-
DPs where the state space S is continuous. The main modifications we make are to repre-
sent belief states approximately as sets of weighted particles, and to apply particle filtering 
(c.f.  [44]) to replace the exact Bayes filter. This allows us to handle belief states without 
assuming them to have any particular parametric representation such as a Gaussian dis-
tribution. We require that samples can be drawn from the initial belief, and from the state 
transition model Ps and observation model Pz . Furthermore, we require that we can evalu-
ate probabilities Pz(zt+1 ∣ st+1, at).

7.1  Forward pass

Given a Dec-POMDP and a joint policy � = (Q, q0, � , �) , in the forward pass we track a 
joint distribution P(st, qt ∣ �) over states and joint policy graph nodes. We first approximate 
this distribution at t = 0 by a set of N ∈ ℕ weighted particles as

https://github.com/laurimi/npgi
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where � is the Dirac delta function, and we sample each particle j = 1, 2,… ,N according 
to

with initial weight w0,(j) = 1∕N.
Given the particle approximation at time t, we find the approximation at time (t + 1) by 

the particle update process in Algorithm 3. We use this algorithm to calculate the sets of 
particles for all time steps t = 1, 2,… , T  . For each particle, we sample the next hidden state 
and the observation, and set the next policy graph node accordingly. No weight updates are 
required, as the effect of the observation probabilities are already included when drawing 
samples from Pz . We therefore omit the weights from the algorithm description, but note 
that they are still required for subsequent steps in the backward pass.

After running Algorithm  3 for all time steps, we have a particle approximation of 
P(st, qt ∣ �) for all t = 0,… , T  as a set of particles {st,(j), qt,(j),wt,(j)

q }N
j=1

 . For any time step t 
and joint policy graph node q ∈ Qt , we obtain an approximation of P(st ∣ q,�) as follows. 
Let Jq ⊆ {1, 2,… ,N} the subset of indices j of particles for which qt,(j) = q . Then the set

of particles where

are the normalized weights approximates P(st ∣ q,�) . The normalization term 
∑
l∈Jq

wt,(l)
q

 

approximates P(q ∣ �) , the probability of reaching q under �.

7.2  Backward pass

The backward pass requires no modifications in terms of the main optimization prob-
lems, Eqs. (11) and (12) that are to be solved. However, the value of a policy has to be 

P(s0, q0 ∣ �) ≈

N∑
j=1

w0,(j)�(s0 − s0,(j))�(q0 − q0,(j))

s0,(j) ∼ b0(s0), q0,(j) ∼ �(q0 − q0),

{st,(j), qt,(j),wt,(j)
q

|j ∈ Jq}

wt,(j)
q

=
wt,(j)

∑
l∈Jq

wt,(l)
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calculated using the particle approximation of the belief. We estimate the expected sum 
of rewards obtained when following � until the end of the horizon by using policy roll-
outs  [8, 55].

When evaluating the value of a node qt
i
 in a policy � during the backward pass, we 

approximate the objective function of Eqs.  (11) and  (12) by Algorithm  4. We loop 
over all joint policy graph nodes qt where agent i is at local policy graph node qt

i
 . On 

Lines 3-4 we first get the particle approximation of P(st ∣ qt,�) , the expected belief state 
at qt , and an estimate of P(qt ∣ �) . We then average the return of K policy rollouts start-
ing from the expected belief to obtain an estimate v̂q of the expected sum of rewards 
from qt until the end of the horizon. The value is weighted by the prior probability to 
reach qt and added to the estimate of sum of rewards (Line 10).

In each rollout, we select actions according to the policy and sample a joint observa-
tion (Line 20). We then apply a particle filter to find the posterior belief at the next time 
step (Line  21). Particle filtering approximates the optimal Bayes filter in cases where 
computing the filtering equations exactly is infeasible, for example due to non-linear-
ity of the state transition or observation model, or because the joint belief state cannot 
be represented exactly. In principle any particle filtering algorithm may be applied. We 
describe in the following briefly the sequential importance resampling (SIR) particle fil-
ter we use in our experiments. More details on SIR and approximate Bayesian filtering 
may be found, e.g., in  [44].

We drop the subscript q and assume we have N particles – with weights normal-
ized to sum to one – that we wish to update using SIR. We are given a particle set 
{sk,(j),wk,(j)}N

j=1
 and a joint action ak and joint observation zk+1 . First, SIR updates each 

particle by drawing a sample from the state transition model according to

for every particle j. Second, the weights of all particles are updated according to

After updating weights, they are renormalized to sum to one. The weight updates tend to 
have an effect of increasing the relative weights of state particles most likely to correspond 
to the perceived joint observation. However, repeating the updates often leads to a situation 
where almost all particles have zero or close to zero weights. Resampling is applied to 

avoid this degenerate situation. If the effective number of particles 1∕
N∑
j=1

(wk+1,(j))2 falls 

below N/10, the particles are resampled after the weight update. In resampling, the weights 
wk+1,(j) are considered as probabilities in a discrete distribution on the particles. A set of N 
samples are drawn from this discrete distribution, and the old particle set is replaced by the 
sampled one. Weights are reset to all be equal to 1/N.

During the rollout, we approximate the per-step reward function �t by the procedure 
EstimatEREwaRd. At the final time step, we approximate the final reward function �T 
using the procedure EstimatEFinalREwaRd. These methods apply the current particle 
approximation of the belief state to evaluate the per-step reward function, and their 
details depend on the selected reward function. In Sect.  8.2, we describe a possible 
implementation in a signal source seeking domain.

(14)sk+1,(j) ∼ Ps(sk+1 ∣ sk,(j), ak)

(15)wk+1,(j) ∝ wk,(j)Pz(zk+1 ∣ sk+1,(j), ak).
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Besides the number of improvement iterations, in the continuous-state variant of 
NPGI the trade-off between algorithm runtime and policy quality is affected by the 
number of rollouts K. Algorithm  4 provides an unbiased estimate v̂ of the expected 
sum of rewards, but the variance of the estimate depends on K. As described in  [55], 
with an estimate error tolerance of � and a confidence threshold of � , the required num-
ber of rollouts is

where vmax and vmin are the greatest and smallest possible expected sums of rewards, respec-
tively. Note that from the forward pass we obtain a particle approximation of the expected 
belief state at a particular node. Therefore, in the backward pass we optimize local policies 
to maximize the lower bound similarly as described in Sect.  6. The number of required 
rollouts concerns approximation quality of the lower bound.

(16)K(�, �) =
(vmax − vmin)

2 ln
1

�

2�2
,
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8  Experiments

We evaluate the performance of NPGI on information gathering Dec-POMDPs. We 
discuss discrete domains in Sect.  8.1 and a continuous-state source seeking domain 
in Sect. 8.2. In both subsections, we introduce the problem domains, the experimental 
setup, and then present the results. The source code of our implementation of NPGI and 
the experimental domains are available online at https ://githu b.com/lauri mi/npgi.

8.1  Discrete domains

We run experiments on the micro air vehicle (MAV) domain of   [27] and propose an 
information gathering rovers domain inspired by the Mars rovers domain of   [2]. In 
both tasks the objective of the agents is to maximize the expected sum of rewards col-
lected minus the entropy of the joint belief at the end of the problem horizon. We pro-
vide a brief summary of the domains in the following, and a complete description in the 
“Appendix”.

MAV domain. A target moves between four possible locations, li in Fig. 5. The tar-
get is either friendly or hostile; a hostile target moves more aggressively. Two MAVs, 
MAV1 and MAV2 in the figure, are tasked with tracking the target and inferring whether 
it is friendly or hostile. The MAVs can choose to use either a camera or a radar sensor 
to sense the location of the target. An observation from either sensor corresponds to a 
noisy measurement of the target’s location. The camera is more accurate if the target is 
close, whereas the radar is more accurate when the target is farther away. The Manhat-
tan distance is applied, i.e., at l0 the target is at distance 0 from MAV1 and at distance 3 
from MAV2. If both MAVs apply their radars simultaneously, accuracy decreases due to 
interference.

Using the camera has zero cost, and using the radar sensor has a cost of 0.1, and an 
additional cost of 1 or 0.1 if the target is at distance 0 or 1 to the MAV, respectively, to 
model the risk of revealing the MAVs own location to the (potentially hostile) target. To 
model information gathering, we set the final reward equal to the negative Shannon 
entropy of the joint belief, i.e., �T (b) =

∑
s∈S

b(s) log2 b(s) . The initial belief is uniform 

over all states. This problem has 8 states; 4 target locations and a binary variable for 
friendly/hostile, and 2 actions and 4 observations per agent.

Information gathering rovers. Two rovers are collecting information on four sites li 
of interest arranged as shown in Fig. 5. Each site is in one of two possible states which 
remains fixed throughout. The agents can move north, south, east, or west. Movement 
fails with probability 0.2, in which case the agent remains at its current location. The 
agents always fully observe their own location. Additionally, the agents can choose to 
conduct measurements of the site they are currently at. A binary measurement of the 
site status is recorded with false positive and false negative probabilities of 0.2 each. 
If the agents measure at the same location at the same time, the false positive and false 
negative probabilities are significantly lower, 0.05 and 0.01, respectively. Movement has 

Fig. 5  Arrangement of locations 
in the MAV domain (left) and 
rovers domain (right) l0 l1 l2 l3MAV1 MAV2

l0 l2

l1 l3

https://github.com/laurimi/npgi
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zero cost, while measurement has a cost of 0.1. The final reward is equal to the nega-
tive entropy. The initial belief is such that one agent starts at l0 , the other at l3 , with a 
uniform belief over the site status. The problem has 256 states, and 5 local actions and 8 
local observations per agent.

8.1.1  Experimental setup

We compare NPGI to one exact algorithm and two heuristic algorithms. The exact method 
we employ is the Generalized Multi-Agent A* with incremental clustering and expan-
sion, or GMAA*-ICE  [38], with the QPOMDP search heuristic. According to  [38] a vec-
tor representation of the search heuristic, analogous to the representation of an optimal 
POMDP value function by a set of so-called �-vectors  [48], can help scale up GMAA*-
ICE to larger problems. However, since the vector representation only exists if the reward 
function is linear in the joint belief, we represent the search heuristic as a tree. The two 
heuristic methods are joint equilibrium based search for policies, JESP   [33], and direct 
cross-entropy policy search, DICEPS  [40].

All of the methods above are easily modified to our domains where the final reward 
is equal to the negative Shannon entropy. However, applicability of NPGI is wider as it 
allows the reward at any time step to be a convex function of the joint belief. There are 
also other algorithms such as FB-HSVI  [14] and PBVI-BB  [29] that have demonstrated 
good performance on many benchmarks. However, these algorithms rely on linearity of the 
reward to achieve compression of histories and joint beliefs, and non-trivial modifications 
beyond the scope of this work would be required to extend them to Dec-POMDPs with 
non-linear rewards.

As baselines, we report values of a greedy open loop policy that executes a sequence of 
joint actions that has the maximal expected sum of rewards under the initial belief, and the 
best blind policy that always executes the same joint action.

We run NPGI using both the exact value of nodes and the lower bound from Corol-
lary 1. The number of policy graph nodes |||Qt

i

||| at each time step t is 2, 3, or 4. For each run 
with NPGI we run 30 backward passes, starting from randomly sampled initial policies. 
For all methods, we report the averages over 100 runs. If a run does not finish in 2 hours, 
we terminate it.

8.1.2  Results

Tables 1 and 2 show the average policy values in the MAV and information gathering rov-
ers problems, respectively. NPGI is indicated by “Ours” when the lower bound (LB) was 
used, and as “Ours (No LB)” when exact evaluation of node values was applied. Results 
are reported as function of the problem horizon T, and for NPGI also as function of the 
policy graph size |||Qt

i

||| . Where applicable, the standard error obtained as the ratio of the 
sample standard deviation and the square root of the number of samples is reported. The 
symbol “-” indicates missing results due to exceeding the cut-off time.

GMAA*-ICE finds an optimal solution, but similarly to   [27] we find that it does not 
scale beyond T = 3 in either problem. Considering T = 2 and T = 3 , the average values of 
our method are very close to the optimal value in both problems. In these cases, we found 
that NPGI finds an optimal policy in about 60% of the runs.

In the MAV problem (Table 1), performance of our method is consistent for varying 
policy graph size |||Qt

i

||| and horizon T. This indicates that even a small policy suffices to 
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reach a high value in this problem. We also see that applying the lower bound does not 
reduce the quality of the policy found by our approach. In the rover problem (Table 2), a 
compact policy with as few as 2 nodes per time step in the policy graph can lead to a high 
value. The situation is potentially different in domains with many more actions and obser-
vations. Given a fixed policy graph size, in such large domains there are more possible 
joint belief states per policy graph node than in domains with few actions and observations. 
As it is possible that every joint belief state requires a different action as a response to 
reach a high expected sum of rewards, the likelihood to discover suboptimal policies is 
increased in large domains. The number of joint belief states per policy graph node also 
affects the quality of the lower bound (Corollary 1). Informally speaking, the greater the 
number of possible joint belief states, the greater the chance that the bound is lower than 
the exact value.

Table 1  Average policy values in the MAV domain ( |S| = 8 , ||Ai
|| = 2 , ||Zi|| = 4)

Best values for each planning horizon are bolded. Numbers in parentheses indicate standard error where 
applicable

Method |||Qt

i

||| T = 2 T = 3 T = 4 T = 5

Ours 2 − 1.931 (2 × 10−3) − 1.833 (3 × 10−4) − 1.768 (6 × 10−5) − 1.725 (1 × 10−4)
3 − 1.931 (2 × 10−3) − 1.833 (3 × 10−4) − 1.768 (6 × 10−5) − 1.724 (5 × 10−6)
4 − 1.931 (2 × 10−3) − 1.832 (3 × 10−4) − 1.768 (2 × 10−5) − 1.724 (5 × 10−6)

Ours (No LB) 2 − 1.930 (2 × 10−3) − 1.832 (2 × 10−3) − 1.768 (8 × 10−5) − 1.725 (7 × 10−5)
3 − 1.930 (2 × 10−3) − 1.833 (3 × 10−3) − 1.768 (5 × 10−5) − 1.724 (5 × 10−6)
4 − 1.930 (2 × 10−3) − 1.832 (2 × 10−3) −  1.768 (2 × 10−5) −  1.724 (6 × 10−6)

DICEPS − 1.925 (1 × 10−3) − 1.937 (3 × 10−3) − 1.926 (1 × 10−3) -1.940 (2 × 10−3)
JESP − 1.953 (2 × 10−3) − 1.859 (2 × 10−3) − 1.794 (4 × 10−4) − 1.750 (4 × 10−4)
GMAA*-ICE − 1.919 − 1.831 – –
Greedy − 2.156 − 2.044 − 1.978 − 1.932
Blind − 1.945 − 1.904 − 1.909 − 1.932

Table 2  Average policy values in the information gathering rovers domain ( |S| = 256 , ||Ai
|| = 5 , ||Zi|| = 8)

Best values for each planning horizon are bolded. Numbers in parentheses indicate standard error where 
applicable

Method |||Qt

i

||| T = 2 T = 3 T = 4 T = 5

Ours 2 − 3.495 (3 × 10−3) − 3.192 (2 × 10−3) − 3.036 (2 × 10−3) − 2.981 (2 × 10−3)
3 − 3.495 (3 × 10−3) − 3.190 (1 × 10−3) − 3.034 (0) − 2.975 (1 × 10−3)
4 − 3.506 (4 × 10−3) − 3.192 (2 × 10−3) − 3.037 (2 × 10−3) − 3.041 (8 × 10−3)

Ours (No LB) 2 − 3.495 (3 × 10−3) − 3.190 (1 × 10−3) − 3.034 (0) − 3.010 (6 × 10−3)
3 − 3.496 (3 × 10−3) − 3.190 (1 × 10−3) − 3.034 (0) –
4 − 3.506 (4 × 10−3) − 3.190 (1 × 10−3) − 3.106 (1 × 10−2) –

DICEPS − 3.482 (1 × 10−3) − 3.535 (1 × 10−2) − 3.825 (2 × 10−2) − 4.792 (3 × 10−2)
JESP − 3.483 (1 × 10−3) − 3.536 (6 × 10−3) – –
GMAA*-ICE − 3.479 − 3.189 – –
Greedy − 3.844 − 4.031 − 3.877 − 3.818
Blind − 3.479 − 3.412 − 3.418 − 3.472
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A higher standard error indicates more variation in the results, and is applicable for 
stochastic methods such as NPGI, DICEPS, and JESP. From Tables  1 and  2 we find 
all of the methods perform consistently, with a low standard error. Notably, for policy 
graph size parameter |Qt

i
| equal to 2 or 3 with T = 4 , NPGI without lower bound always 

converges to a policy with the same value. In the rovers domain (Table 2) we observe 
the standard error to increase for T = 5 . As fewer improvement iterations can be com-
pleted within the cut-off time of 2 hours, the effect of the randomly initialized starting 
policy is still seen.

Table 3 shows the average duration of one backward pass of Algorithm 1 as function of 
the problem horizon T with |||Qt

i

||| = 2 , with or without using the lower bound (LB). The 
lower runtime requirement when applying the lower bound is seen clearly for T ≥ 4 . The 
runtime of NPGI is dominated by the backward pass and solving the local policy optimiza-
tion problems, Eqs. (11) and (12), which applying the lower bound help reduce. As indi-
cated by the results in Tables 1 and 2, applying the lower bound also does not degrade the 
quality of the policies found. However, as noted above, the lower bound is also potentially 
looser in domains with a greater number of actions and observations.

Our method outperforms the greedy and blind baselines except for T = 2 in the rover 
problem where a blind policy of always measuring is optimal. In several cases, JESP and 
DICEPS return policies with a value lower than one or both of the baselines.

The size of the policy graph in NPGI must be specified before calculating the policy. 
As shown by our experiments, fixing the policy graph size effectively limits the space of 
policies to be explored and can produce compact and understandable policies. However, 
a potential weakness is that optimizing over fixed-size policies excludes the possibility to 
find a larger but potentially better policy.

Execution of NPGI may be terminated after any number of improvement steps and the 
best joint policy found so far will be returned. This allows the user to control the trade-off 
between the quality of the returned policy and the runtime of the algorithm. To investigate 
this trade-off and its dependence on the policy graph size and whether the lower bound is 
applied or not, we recorded the value of the best joint policy after each improvement itera-
tion in each of the 100 runs. In Fig. 6, we report the average, greatest, and smallest values 
of the best joint policies for the MAV domain with planning horizon T = 5 . We display 
results only for the first 30 improvement steps, as there were no significant changes over 
the remaining 20 improvement steps.

When the lower bound is not applied, i.e., the value function is evaluated exactly, on 
average NPGI improves the value of the joint policy slightly faster. This is seen by compar-
ing the solid lines in the left and right hand plots of Fig. 6 during the initial 10 improve-
ment steps. However, after a sufficient number of improvement steps (in this case more 
than 20), NPGI with the lower bound also tends to achieve joint policies of equal quality, 
as also shown in Table 1.

Table 3  Average NPGI backward 
pass duration (in seconds) with 
or without lower bound (LB)

MAV Rovers

T With LB No LB With LB No LB

2 0.002 0.002 0.04 0.04
3 0.04 0.05 0.26 0.34
4 1.20 2.74 1.43 4.40
5 31.02 55.34 32.23 158.7
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Figure 6 indicates that the average value of the best joint policy over all repetitions con-
verges towards the overall best value policy found among all repetitions (indicated by the 
upper dotted line). In most cases NPGI is able to find good quality policies given suffi-
cient improvement steps. However, the worst cases indicated by the lower dotted lines are 
indicative of a weakness of NPGI, namely that it is still possible that a poor initialization 
leads NPGI to get stuck at a poor local maximum. This issue is more severe the smaller 
the policy graph: with a poorly initialized and small policy graph, there are few oppor-
tunities to improve the policy. This can be seen by comparing the lower dotted lines in 
Fig. 6 that show the smallest value of the best joint policy found over all the 100 repetitions 
of the experiment. When using the lower bound with size parameter |Qt

i
| = 2 , the joint 

policy cannot be improved above the value of -1.74 in some repetitions. As is also seen 
from Fig.  6, worst-case performance is improved when exact value computation is used 
instead of the lower bound, and tends to also be better when larger policy graph sizes are 
considered.

We examined the results also for other planning horizons in the MAV domain. For plan-
ning horizons T = 2 and 3, the average, greatest, and smallest values were similar regard-
less of whether the lower bound was used or not. As discussed in Sect. 6, the lower bound 
is tighter the less histories map to each policy graph node. With shorter planning horizons, 
there are less histories possible at a particular policy graph node, which explains why the 
results are similar for both NPGI and NPGI without the lower bound. For planning horizon 
T = 4 , the results not using the lower bound resulted in improvements of the average value 
over fewer improvement steps, similarly as in Fig. 6. However, the difference in the average 
values again decreases when more improvement steps are completed.

We also examined the results in the information gathering rovers as a function of the 
number of improvement steps, and observed similar trends as in the MAV domain. Aver-
age joint policy value over all repetitions for NPGI both with or without using the lower 
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Fig. 6  Joint policy value in the MAV domain with planning horizon T = 5 as a function of the number of 
improvement steps for NPGI with the lower bound (left) and without the lower bound (right). Solid lines 
indicate the average value of all best policies over the 100 repetitions. The dotted lines indicate the greatest 
and smallest values of the best policies found over all repetitions. Note that the maxima are identical such 
that only the cyan dotted line is visible. The color of the lines indicates the size parameter |Qt

i
| of the policy 

graphs. NPGI may be terminated after any number of improvement steps
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bound converges towards the maximum joint policy value among all repetitions. Conver-
gence tends to require fewer iterations when not using the lower bound. In the case T = 5 
the comparison could not be done, since without using the lower bound only at most 4 
improvement steps could be completed within the cutoff time for |Qt

i
| = 2 , and none for the 

larger policy graph sizes.

8.2  Continuous‑state source seeking

We consider a signal source seeking problem where two agents infer the location of a 
signal source based on noisy data. The agents can move around the area and observe the 
received signal strength (RSS) from the source. RSS tends to be lower the farther away the 
source is from the receiving agent. We use NPGI to design local policies for the agents 
with the objective of minimizing the uncertainty of the source location estimate.

There is a stationary signal source at some unknown location ls in the two dimen-
sional space L = [−20, 20] × [−20, 20] . The two agents can move between a finite subset 
L = {l0, l1,… , l8} ⊂ L of locations along the edges of an undirected graph, as illustrated in 
Fig. 7. The possible local actions of each agent are to either deterministically move to any 
location adjacent to their current location, or stay where they are.

After moving to location l, the agent records the RSS from the source. We model RSS 
similarly as  [5] by

where Ptx = 18 dBm is the power transmitted by the source, Gtx = 1.5 dBi is the transmitter 
antenna gain, Ltx = 0 dB is the transmitter loss, Grx = 1.5 dBi is the receiver antenna gain, 
Lrx = 0 dB is the receiver loss, Lfs is the free space loss, and R is the noise due to signal 
fading. The free space loss in dB is

(17)RSS(l, ls) = Ptx + Gtx − Ltx + Grx − Lrx − Lfs(l, ls) − R,

(18)Lfs(l, ls) = −27.55 + 20 log10(�) + 20 log10(d(l, ls)),

Fig. 7  A signal source is located 
in the 40-by-40 meter region 
depicted. Two agents can move 
between the nodes along the 
edges of the undirected graph. 
The number i inside each node 
indicates the location li it corre-
sponds to. The closer an agent is 
to the signal source, the stronger 
the received signal strength 
(RSS) it records tends to be. The 
agents infer the source location 
based on their RSS observations
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where � = 2.4 GHz is the transmitted frequency, and d(l, ls) is the Euclidean distance 
between the source and receiver. We assume Rician fading, which fits scenarios where one 
signal path is dominant over the others. We set R ∼ Rice(�, �) with � = 20 dB, � = 4 dB. 
The distribution of the received signal strength with fading as a function of distance from 
the source is illustrated in Fig. 8.

For planning, we discretize the perceived RSS into three discrete observations: high 
(RSS ≥ −110 dBm), medium (-110 dBm > RSS ≥ -125 dBm), and low (RSS < -125 dBm). 
The probabilities of the respective discretized observations as a function of distance from 
the source are illustrated in Fig. 8.

We implement the procedure EstimatEFinalREwaRd from Algorithm  4 by first 
evaluating the weighted sample covariance, and then computing its log determinant. 
Denote the final set of weighted particles as {wT ,(j), sT ,(j)}N

j=1
 , where each state particle 

sT ,(j) = (l
T ,(j)

1
, l
T ,(j)

2
, l
T ,(j)
s ) is a tuple consisting of the locations lT ,(j)

1
, l
T ,(j)

2
∈ L of the two agents 

and the source location lT ,(j)s ∈ L ⊂ ℝ
2 . We first compute the weighted average source 

location

The 2-by-2 weighted sample covariance matrix �T is then obtained by

where (⋅)� denotes transpose. The procedure finally returns − log det�T , the log determi-
nant of the weighted sample covariance matrix of the state particles.

This choice of reward function is suitable since the weighted covariance of the particles 
is smaller the more tightly the particles are clustered together. Unimodal density estimates 

(19)l̂T
s
=

N∑
j=1

wT ,(j)lT ,(j)
s

.

(20)
𝛴T =

1

1 −
N∑
j=1

(wT ,(j))2

N�
j=1

wT ,(j)(lT ,(j)
s

− l̂T
s
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Fig. 8  The observation model with Rician fading in the source seeking task. Above: The mean of received 
signal strength (RSS) and its 95% limits under Rician fading as a function of distance. Below: the probabili-
ties of the three discretized observations as a function of distance
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where covariance is small are also preferred over multimodal estimates where the overall 
covariance is larger even if the modes themselves are strongly concentrated. This makes 
the reward function suitable for tasks where a single location estimate should be produced. 
A technical justification for the reward function choice is that the differential entropy (a 
measure of uncertainty for continuous random variables) of a multivariate Gaussian dis-
tribution is proportional to the log determinant of the covariance matrix of the Gaussian.

Since all other rewards in the source seeking problem are equal to zero, the procedure 
EstimatEREwaRd from Algorithm  4 simply always returns zero. We briefly outline how 
other, more complicated reward functions could be implemented in EstimatEREwaRd. Non-
linear rewards �t ∶ �(S) × A → ℝ could be estimated by applying a similar strategy as for 
the procedure EstimatEFinalREwaRd above, by implementing a suitable function that maps 
a joint action and a belief state represented as set of weighted particles to a real-valued 
reward. Given a weighted set of particles {wt,(j), st,(j)}N

j=1
 and a joint action at , a standard 

state and action based reward could easily be implemented by returning the weighted sum 
N∑
j=1

wt,(j)R(st,(j), at) , where R is an appropriate state-based reward function.

For numerical stability, we clamped the maximum value returned by EstimatEFinal-
REwaRd to 50.0. The smallest and greatest possible sum of rewards in any rollout by Algo-
rithm 4 are vmin = 0.0 and vmax = 50.0 , respectively.

8.2.1  Experimental setup

We apply the NPGI variant for continuous-state problems with particle filtering to find a 
joint policy for the agents in the source seeking problem. We investigate planning hori-
zons T = 3, 4,… , 7 with randomly initialized policy graphs of width |Qt

i
| = 2 or 3. We use 

10000 particles to represent P(st, qt ∣ �) . During the backward pass, we apply K = 100 roll-
outs to evaluate the policy values. Assuming a confidence threshold � = 0.05 , and given 
the smallest and greatest possible sums of rewards vmin = 0.0 and vmax = 50.0 returned in 
any rollout this value corresponds to an error tolerance of � ≈ 6 according to Eq. (16). We 
experimented with 10 rollouts, giving an error tolerance of approximately 20 which we 
found to make the algorithm unstable, with a large number of changes in the local policies 
due to the high variance of rollout value estimates. On the other hand, experiments with 
1000 rollouts with corresponding error tolerance of approximately 1.9 did not significantly 
improve the outcomes while increasing the runtime. We run 50 improvement steps (for-
ward and backward passes) in each case. A cut-off time of 2 hours is applied for policy 
graph width 2, and 6 hours for policy graph width 3. We repeat the NPGI policy computa-
tion 100 times using different random seeds.

We compare NPGI to two baselines: a random policy where each agent chooses a valid 
action uniformly at random, and a hand-designed patrolling policy. The patrolling policy 
is designed such that the agents cover the maximum amount of locations in the graph (see 
Fig. 7). In the patrolling policy, agent 1 follows the path (l1, l2, l6, l5, l8, l7, l2) , and agent 2 
follows the path (l0, l3, l4, l7, l8, l5, l1).

We run 1000 simulations on each policy. The initial belief of the signal source location 
is uniform over L , and we sample the true location of the signal source uniformly at ran-
dom. Both agents start at l0 . We record the average error in the final estimate of the source 
location. For state estimation during the simulations, we use a particle filter on the continu-
ous observed RSS values.
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8.2.2  Results

The average source localization error for the random, patrolling, and policies found by 
NPGI are shown in Fig. 9. For each planning horizon T, we report the final average error 
obtained by simulating the corresponding policy for T steps. For NPGI, we report only 
the result with policy graph width of |Qt

i
| = 2 , as we found the average to not differ sig-

nificantly from |Qt
i
| = 3 . The standard error for all policies is very small, in the order of 

10−2 meters, and is not visible in Fig. 9.
As expected, the policy of randomly selecting locations from which to observe the 

RSS performs worst. For T = 3 , the patrolling policy that attempts to visit as many 
locations as possible and our NPGI policies perform almost equally well. However, for 
T ≥ 4 , NPGI policies that decide the next location based on the history of RSS meas-
urements are able to reach a lower average error than the patrolling policy. The perfor-
mance difference between patrolling policy and NPGI diminishes for T = 7 . When all 
locations li have been visited, it is likely that the agents have perceived a high RSS in at 
least one of them which allows accurate estimation of the source location.
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Figure 10 shows an example of one of the policies found by NPGI for T = 5 with policy 
graph width |Qt

i
| = 3 . This policy reached an average localization error of 15.1 meters. The 

policy of agent 1 is shown on the left side of the figure, and it indicates the agent mostly 
stays in the bottom half of the environment around nodes 2, 3, and 4 (see Fig. 7). The pol-
icy of agent 2, shown on the right of Fig. 10, indicates it in turn remains in the upper half 
of the environment, mainly at nodes 0 and 1, sometimes 3.

The compact policies produced by NPGI are easily interpretable and understandable. 
We see that the two agents cooperate by concentrating their search efforts on the bottom 
and top halves of the environment (Fig. 7), respectively. Interestingly, the second to last 
action for agent 1 is always to move to location 3. However, conditional on how the agent 
arrives there (through which path in the policy graph), and what its final observation is, 
the agent’s final location may be either one of 2, 3, or 4. Another observation we can make 
is that both agents avoid the center of the environment, never moving to location 8. RSS 
measurements recorded at the other surrounding nodes (0,1,2,3) suffice to estimate the 
source location.

We have demonstrated that NPGI can be applied to continuous-state domains, and that 
it can outperform random and simple heuristic policies. One further advantage that plan-
ning methods such as NPGI have but we do not investigate here in detail is that plans can 
be generated for particular initial information simply by re-executing the planner. In con-
trast, heuristic policies potentially require redesign by hand for each new initial information 
state.

9  Conclusion and future work

We showed that if the reward function in a finite-horizon Dec-POMDP is convex in the 
joint belief, then the value function of any policy is convex in the joint belief. Rewards 
that are convex in the joint belief are important in information gathering problems. We 
applied the result to derive a lower bound for the value, and empirically demonstrated that 
it improves the run-time of a heuristic anytime planning algorithm without degrading solu-
tion quality. We empirically showed that our algorithm outperforms existing heuristic solv-
ers that are applicable to convex reward Dec-POMDPs. Furthermore, we derived an exten-
sion of our algorithm to continuous-state information gathering Dec-POMDPs with finite 
action and observation spaces and demonstrated its performance in a cooperative source 
seeking problem.

The work we presented here offers a principled formulation of model based multi-agent 
active information gathering, viewing it as a Dec-POMDP with an information-theoretic 
reward function. There are several potential directions of future research into decentralized 
information gathering problems.

We considered reward functions that are convex in the joint belief, since they are well-
justified for information-gathering problems. However, NPGI with exact value function 
evaluation is applicable with rewards that depend on the joint belief in an arbitrary way. 
Investigation of other types of reward functions is a potential future direction.

Single-agent POMDPs with piecewise linear and convex (PWLC) reward functions can 
be shown to be equivalent to POMDPs with linear rewards through an augmentation of the 
action space with prediction actions  [45]. Whether such an equivalence can be established 
for multi-agent Dec-�POMDPs we studied in this article remains an open question. As a 
convex function can be arbitrarily well approximated by a PWLC function, finding such 
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an equivalence can potentially lead to an approximation algorithm for Dec-�POMDPs with 
bounded suboptimality.

The heuristic anytime algorithm we present offers no guarantees on the performance 
of policies found. We empirically found the performance to be close to optimal in the 
discrete domains we examined and outperforming all baselines in the continuous-state 
domain. It remains to be investigated whether these findings translate to domains with a 
greater number of actions and observations as well. Up to date, state-of-the-art solvers for 
Dec-POMDPs with linear rewards (e.g.,   [14, 29]) can address problems larger than the 
Dec-�POMDPs with non-linear rewards we addressed here. Scaling up to larger problems 
remains an open challenge for Dec-�POMDPs.
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Full description of the discrete experimental domains

In this appendix, we provide a full description of the two discrete experimental domains.

Micro air vehicle

In the micro air vehicle (MAV) domain there are two agents such that I = {1, 2} . A state 
is a pair (l, f) consisting of the location l and the type f of the target. The location takes a 
value in L = {l0, l1, l2, l3} where the arrangement of locations is illustrated in Fig. 5 (left). 
The type takes a value in F = {friendly, hostile} . The state space is S = L × F . Agent 1 is 
located at l0 , and agent 2 is located at l4 (see Fig. 5 left). Each agent has local action space 
Ai = {camera, radar} and local observation space Zi = {z0, z1, z2, z3} , where each zk corre-
sponds to a Manhattan distance of k from the agent.

The type of the target remains fixed throughout the task. Target motion is stochastic. If 
the target is friendly (hostile), it will stay at its current location with probability 0.85 (0.6). 
Otherwise, it will move to an adjacent location uniformly at random.

Reliability of measurements depends on the distance between each agent and the target. 
Furthermore, reliability is degraded due to interference if both agents operate their radar 
concurrently. As hostile targets are actively avoiding detection, measuring their location is 
less reliable. If an agent applies its camera, the measurement model is described by the two 
matrices

http://creativecommons.org/licenses/by/4.0/
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where Oc,f  concerns the case where the target is friendly, and Oc,h the case where the target 
is hostile. From top to bottom, each row of the matrix corresponds to the measurements 
z1, z2, z3 , and z4 . From left to right, each column of the matrix corresponds to the true Man-
hattan distance between the agent and the target. Each matrix element prescribes the condi-
tional probability of perceiving the corresponding local observation given the true distance 
to the target.

In case only one of the agents uses its radar, detection reliability is improved. The measure-
ment model is described by the two matrices

interpreted similarly as above. If both agents concurrently apply their radar, measurement 
quality degrades due to inference and both agents’ measurement model is described by the 
matrices

interpreted as above.
On time steps t < T , a standard state-dependent reward of the form R(s, a) is used. For each 

agent that applies its radar a reward of −0.1 is obtained, but otherwise rewards are zero for all 
state and action pairs. At step t = T , the reward is set equal to the negative Shannon entropy of 
the joint belief state. The initial state distribution is uniform over all states.

Information gathering rovers

In the information gathering rovers domain there are two agents such that I = {1, 2} . A state 
is a tuple (s1, s2,m1,m2,m3,m4) , where si denotes the location of agent i and mk denotes 
the state of location k. The location si assumes values in L = {l0, l1, l2, l3} , where the loca-
tions are arranged as shown in Fig. 5 (right). The state of each location is a binary variable 
mk ∈ {0, 1} . In total, the state space is S = L × L × {0, 1}4 . The action space of both agents 
is Ai = {north, south, east, west, measure} . Each agent records an observation that is a pair 
(l̂, m̂) of a measured location l̂ and a measured state m̂ of the current location. The possible 
observations of both agents are Zi = L × {0, 1}.

The state of each location remains fixed throughout the task. The movement actions may 
change the agents’ locations. If an illegal movement action is chosen (e.g., attempting to move 
south at location l1 ), the agent’s location remains unchanged. Otherwise, the movement suc-
ceeds with probability 0.8, and with probability 0.2 the agent remains at its current location.

(21)

Oc,f =

⎡
⎢⎢⎢⎣

0.9961 0.2547 0.2173 0.2426

0.0039 0.4419 0.2561 0.2493

0.0000 0.2547 0.2705 0.2534

0.0000 0.0487 0.2561 0.2547

⎤
⎥⎥⎥⎦
, Oc,h =

⎡
⎢⎢⎢⎣

0.6945 0.2616 0.2396 0.2468

0.2855 0.2957 0.2520 0.2497

0.0198 0.2616 0.2564 0.2515

0.0002 0.1811 0.2520 0.2520

⎤
⎥⎥⎥⎦

(22)

Or,f =

⎡⎢⎢⎢⎣

1.0000 0.0404 0.0224 0.0703

0.0000 0.9192 0.2336 0.1867

0.0000 0.0404 0.5104 0.3354

0.0000 0.0000 0.2336 0.4076

⎤⎥⎥⎥⎦
, Or,h =

⎡⎢⎢⎢⎣

0.9220 0.2493 0.1658 0.2004

0.0780 0.4623 0.2634 0.2431

0.0000 0.2493 0.3074 0.2729

0.0000 0.0391 0.2634 0.2836

⎤⎥⎥⎥⎦

(23)

Or̂,f =

⎡⎢⎢⎢⎣

0.5705 0.2662 0.1799 0.1733

0.3460 0.3418 0.2618 0.2369

0.0772 0.2662 0.2965 0.2857

0.0063 0.1258 0.2618 0.3041

⎤⎥⎥⎥⎦
Or̂,h =

⎡⎢⎢⎢⎣

0.5000 0.2625 0.2173 0.2212

0.3533 0.3013 0.2561 0.2466

0.1247 0.2626 0.2705 0.2632

0.0220 0.1736 0.2561 0.2690

⎤⎥⎥⎥⎦
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Regardless of the action taken by an agent, it will always correctly observe its own current 
location. The second part of the measurement, the state of the current location, is subject to 
uncertainty. If an agent takes a movement action, it will observe the state as either 0 or 1 uni-
formly at random. If one agent i alone takes a measurement action at a location lk , the meas-
urement probability is conditional on the state mk according to

and palone(m̂ = 1 ∣ mk) = 1 − palone(m̂ = 0 ∣ mk) . In case both agents are at the same loca-
tion lk and select the measurement action, the measurement reliability of both agents is 
improved, and governed by

and ptogether(m̂i = 1 ∣ mk) = 1 − ptogether(m̂i = 0 ∣ mk).
On time steps t < T  , a state-dependent reward R(s, a) is used. For each agent that takes 

a measurement action a reward of −0.1 is obtained, otherwise rewards are zero. At step 
t = T  , the reward is set equal to the negative Shannon entropy of the joint belief state. The 
initial state distribution is such that agent 1 starts at location l0 and agent 2 at location l3 , 
and the belief over location states mk is uniform.
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