
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2020) 34:42
https://doi.org/10.1007/s10458-020-09467-6

1 3

Multi‑agent active information gathering in discrete
and continuous‑state decentralized POMDPs by policy graph
improvement

Mikko Lauri1 · Joni Pajarinen2,3 · Jan Peters3,4

Published online: 10 June 2020
© The Author(s) 2020

Abstract
Decentralized policies for information gathering are required when multiple autonomous
agents are deployed to collect data about a phenomenon of interest when constant com-
munication cannot be assumed. This is common in tasks involving information gathering
with multiple independently operating sensor devices that may operate over large physical
distances, such as unmanned aerial vehicles, or in communication limited environments
such as in the case of autonomous underwater vehicles. In this paper, we frame the infor-
mation gathering task as a general decentralized partially observable Markov decision
process (Dec-POMDP). The Dec-POMDP is a principled model for co-operative decen-
tralized multi-agent decision-making. An optimal solution of a Dec-POMDP is a set of
local policies, one for each agent, which maximizes the expected sum of rewards over time.
In contrast to most prior work on Dec-POMDPs, we set the reward as a non-linear func-
tion of the agents’ state information, for example the negative Shannon entropy. We argue
that such reward functions are well-suited for decentralized information gathering prob-
lems. We prove that if the reward function is convex, then the finite-horizon value func-
tion of the Dec-POMDP is also convex. We propose the first heuristic anytime algorithm
for information gathering Dec-POMDPs, and empirically prove its effectiveness by solving
discrete problems an order of magnitude larger than previous state-of-the-art. We also pro-
pose an extension to continuous-state problems with finite action and observation spaces
by employing particle filtering. The effectiveness of the proposed algorithms is verified in
domains such as decentralized target tracking, scientific survey planning, and signal source
localization.

Keywords Planning under uncertainty · Decentralized POMDP · Information gathering ·
Active perception

 * Mikko Lauri
 lauri@informatik.uni-hamburg.de

1 Department of Informatics, University of Hamburg, Hamburg, Germany
2 Tampere University, Tampere, Finland
3 Intelligent Autonomous Systems, Technische Universität Darmstadt, Darmstadt, Germany
4 Max Planck Institute, Tübingen, Germany

http://orcid.org/0000-0002-2223-9253
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09467-6&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 2 of 44

1 Introduction

Autonomous agents and robots can be deployed in information gathering tasks in environ-
ments where human presence is either undesirable or infeasible. Examples include moni-
toring of deep ocean conditions, or space exploration. It may be desirable to deploy a team
of agents due to the large scope of the task at hand, resulting in a multi-agent active infor-
mation gathering task. Such a task typically has a definite duration, after which the agents,
the data collected by the agents, or both, are recovered. For example, underwater survey
vehicles may be recovered by a surface vessel after completion of a survey mission, or the
agents may periodically communicate their data back to a base station.

The overall task can be viewed as sequential decision-making. Each agent takes an
action and then perceives an observation. The action taken is determined based on the his-
tory of the agents’ past actions and observations. Action selection is repeated after per-
ceiving each observation until the task ends. To maximize effectiveness of the team and
the informativeness of the data collected, planning is required. Planning produces a policy
that prescribes how each team member should act to maximize a shared utility. Utility in
information gathering tasks is measured by information-theoretic quantities, such as nega-
tive entropy or mutual information. Planning should also take into account the possible
non-determinism of action effects and observation noise. During the task, the maximum
range of communication between agents and the amount of data that can be transmitted can
vary, or there may be delays in communication. At one extreme, communication is entirely
prevented during task execution.

We approach cooperative information gathering as a decentralized partially observable
Markov decision process, or Dec-POMDP [7, 37]. The Dec-POMDP is a general model
for sequential co-operative decision-making under uncertainty. It models uncertainty in the
current state of the system, the effects of actions, and observation noise. Types of inter-
agent communication, such as data-rate limited, delayed, or non-existent communication,
can be explicitly modelled in the Dec-POMDP framework. This generality makes the Dec-
POMDP an ideal choice for formalizing multi-agent information gathering problems.

Specifically, a Dec-POMDP models a sequential multi-agent decision making task.
There is an underlying hidden system state, and a set of agents. Each agent has its own
set of local actions it can execute, and a set of local observations it may perceive. Marko-
vian state transition and observation processes conditioned on the agents’ actions and the
state determine the relative likelihoods of subsequent states and observations. A reward
function determines the utility of executing any action in any state. In a Dec-POMDP, no
implicit communication or information sharing between the agents during task execution
is assumed. Communication may be explicitly modelled via the actions and observations.
Each agent acts independently, without necessarily knowing what the other agents have
perceived or how they have acted. The objective in a Dec-POMDP is to plan optimal local
policies for each agent that maximize the expected sum of rewards over a finite horizon of
time.

A decentralized information gathering task differs from other multi-agent control tasks
by the lack of a goal state. It is not the purpose of the agents to execute actions that reach a
particular state, but rather to observe the environment in a manner that provides the great-
est amount of information while satisfying operational constraints. As the objective is
information acquisition, the reward function depends on the joint belief of the agents.

In contrast to most prior work on Dec-POMDPs, in this paper we consider reward func-
tions that are non-linear functions of the joint belief state. Convex functions of a probability

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 3 of 44 42

mass function naturally model certainty [13], and have been proposed before in the con-
text of single-agent POMDPs [3] and Dec-POMDPs [27]. However, to the best of our
knowledge no heuristic or approximate algorithms for convex reward Dec-POMDPs have
been proposed, and no theoretical results on the properties of such Dec-POMDPs exist in
the literature.

1.1 Contributions

Information gathering in decentralized POMDPs (Dec-POMDPs) remains very much an
unexplored topic in multi-agent research. According to our knowledge, the only paper prior
to ours on information gathering Dec-POMDPs is [27] (same first author as in this paper).
Linear reward Dec-POMDPs are solved in several works [7, 14, 19, 29, 33, 35, 38, 40, 42,
47] and Spaan et. al. gather information in fully centralized multi-agent POMDPs [50].
Our work in contrast focuses on Dec-POMDPs with a non-linear reward function. Informa-
tion gathering for single-agent POMDPs is formalized by Araya-López et. al. [3] using
a convex reward function. In this paper, we prove that the value function of information
gathering Dec-POMDPs is convex. Lauri et. al. [27] apply the ideas presented in [3] to the
Dec-POMDP setting by modifying an existing search tree based Dec-POMDP algorithm.
We instead utilize our new proof of value function convexity by combining the idea of iter-
ative improvement of a fixed-size policy represented as a graph [42], and reasoning about
reachability of the graph nodes in a manner methodologically similar to the plan-time suf-
ficient statistics of [35]. In experiments, our algorithm solves problems an order of magni-
tude larger than prior state-of-the-art. The Dec-POMDP generalizes other decision-making
formalisms such as multi-agent POMDPs and Dec-MDPs [7]. Thus, our results also apply
to these special cases, as illustrated in Fig. 1.

Specifically, the contributions of our article are:

• We prove that in Dec-POMDPs where the reward is a convex function of the joint
belief, the value function of any finite horizon policy is convex in the joint belief.

• We propose the first heuristic anytime algorithm for Dec-POMDPs with a reward that
is a function of the agents’ joint state information. The algorithm is based on iterative
improvement of the value of fixed-size policy graphs. We derive a lower bound that
may be improved instead of the exact value, leading to computational speed-ups. We
also propose an extension of the algorithm for problems with a continuous state space
and finite action and observation spaces.

• We experimentally verify the feasibility and usefulness of our algorithm in Dec-POM-
DPs with non-linear rewards, in domains such as decentralized target tracking, scien-
tific survey planning, and signal source localization.

Fig. 1 Relationships of Marko-
vian decision processes. Dec-�
POMDPs investigated in this
article are Dec-POMDPs with a
reward that is a convex function
of the joint belief state

Dec-POMDP

POMDP Dec-MDPMDP

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 4 of 44

This article is an extended version of our earlier conference paper [28] published in the
Proceedings of the International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS) 2019. The extensions compared to the conference paper are the following:

• The conference paper is restricted to discrete small state spaces. To improve the appli-
cability of the proposed approach, we extend the algorithm to large discrete and con-
tinuous state spaces by utilizing particle filtering.

• We extend the experimental evaluation with a new benchmark task motivated by signal
source localization and mobile robotics. In the benchmark task, the agents can move
from a graph node to another and receive observations of a signal source depending on
the distance to the source. For the discrete domains, we provide new data for the any-
time performance of our proposed algorithm.

• We extend the related work section, and describe the algorithm in more detail. In par-
ticular, we clarify the backward pass. We also provide a complexity analysis of the pro-
posed algorithm.

1.2 Outline

The article is organized as follows. We review related work in Sect. 2. In Sect. 3, we define
the Dec-POMDP problem we consider and introduce notation and definitions. Section 4
derives the value of a policy graph node. In Sect. 5, we prove convexity of the value in
a Dec-POMDP where the reward is a convex function of the state information. Section 6
introduces our policy improvement algorithm, while in Sect. 7 we present its extension to
continuous-state problems with finite action and observation spaces. Experimental results
are presented in Sect. 8, and concluding remarks are provided in Sect. 9.

2 Related work

In a wide range of applications, autonomous systems have controllable sensors or the abil-
ity to otherwise control data acquisition. This allows active information gathering and
planned allocation of sensing resources. Active information gathering is known by sev-
eral synonyms or near-synonyms depending on the context and subfield, such as sensor
management [20] or active perception [6]. In the following, we first review approaches
based on other models than Dec-POMDPs for multi-agent active information gathering.
Secondly, we review the state-of-the-art in Dec-POMDPs and highlight the differences to
the present paper.

2.1 Multi‑agent active information gathering

In the following paragraphs, we review related work in multi-agent active information
gathering in three major directions: distributed constraint optimization problems, applica-
tion of sequential greedy maximization of submodular functions, and adaptation of single-
agent POMDP methods to the multi-agent setting. Finally, we briefly review other related
techniques such as applying open loop planning, gradient ascent based control, stochastic
control under simplifying assumptions, and active distributed hypothesis testing.

A detailed review of the solution techniques for each of these related approaches is
beyond the scope of the present paper. We refer the reader to relevant literature on the

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 5 of 44 42

respective topics, and instead focus on describing applications and modelling assumptions
and contrasting them to the Dec-POMDP approach to multi-agent active information gath-
ering. Each of the alternative approaches we review makes some simplifying assumptions
about the active information gathering problem in contrast to Dec-POMDP based planning.
For instance, action effects may be assumed to have known outcomes. The system state
may be assumed to be static, or perfectly known to the agents, or it may be assumed to
evolve deterministically. Finally, implicit local communication is often assumed to be pos-
sible, whereas in the Dec-POMDP communication is allowed only if explicitly modelled.

Distributed constraint optimization problems Information gathering can be framed as a
distributed constraint optimization problem (DCOP). Instead of trying to find a policy for
each agent that maximizes total expected information gain in a stochastic dynamic system
over time, the standard DCOP finds a variable assignment for each agent such that, for
example, sensors cover a large area. Compared to a full Dec-POMDP solution a DCOP
approach is computationally less intensive but usually requires stronger assumptions or
approximations to the underlying problem. There are also extensions to basic DCOP; we
discuss DCOPs and these extensions in the context of information gathering next.

Distributed constraint optimization problems (DCOPs) are described by a set of agents
and a set of variables along with a set of cost functions. Each variable is assigned to one of
the agents. Each of the cost functions is defined on a subset of the variables it is affected
by. The cost functions are real-valued, although an additional special value can indicate a
violated constraint. A solution of a DCOP is an assignment of all variables that does not
violate any of the constraints, with each agent only choosing the assignment of variables
assigned to it. The objective is to find a solution that minimizes the sum of the individual
cost functions such that no constraints are violated. With regards to communication, a typi-
cal setting in DCOPs is that each agent can communicate locally with its neighbouring
agents to coordinate actions. The most relevant variants of DCOPs for active information
gathering are dynamic DCOPs and probabilistic DCOPs [54], which we discuss next. For
a detailed introduction to DCOPs and their solution algorithms, we refer the reader to the
recent survey [16].

A dynamic DCOP (D-DCOP) extends the variables, assignments, and cost functions to
depend on a discrete time step. A D-DCOP may be viewed as a sequence of DCOP prob-
lems, one for each time step. The DCOP at the current time step is assumed to be known
by the agents, however the agents are unaware how the DCOP will evolve over future time
steps. Zivan et. al. [57] present a D-DCOP variant for controlling a mobile sensor team
tracking multiple targets. Each sensor is an agent that has a perfectly observable variable
describing its location which may evolve locally over time. Each target is represented by
a cost function whose value depends on how well the sensors cover the target. The cover-
age of a target is measured by a monotonic function of the number of agents within sens-
ing range of the target, and no explicit probabilistic modelling of the sensing process is
undertaken.

Markovian D-DCOPs [34] augment D-DCOPs by introducing an underlying state
with Markovian dynamics depending on the variable assignments. The cost functions
are dependent on the state that is fully observable. Unlike in the D-DCOP, changes in
the Markovian D-DCOP are restricted to changes in the underlying state. The Markovian
D-DCOP is demonstrated in a multi-sensor tracking environment, where the target state
is described using the Markovian dynamics and the variable assignments correspond to
assignments of sensors to targets.

Probabilistic DCOPs (P-DCOP) contain two types of variables: decision variables
and random variables. Decision variables are analogous to variables in the DCOP, with

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 6 of 44

assignments selected by the agents. Random variables model events beyond the agents’
control and assume values according to a specified probability distribution. In the
P-DCOP actions have known outcomes. Uncertainty in environment dynamics is mod-
elled by defining stochastic cost functions. The cost functions may depend on decision
variables and random variables. The objective is to find an assignment of all decision
variables such that, e.g., the expected utility of the assignments under the probability
distribution of the random variables is maximized. P-DCOPs with partial agent knowl-
edge [22, 53] are a variant especially relevant for active information gathering. They
introduce a finite time horizon to the P-DCOP, and a solution is an assignment of deci-
sion variables for each time step. The objective is to maximize the cumulative utility
over the time horizon. At each time step the agents acquire information about the cost
functions and the available utility through exploration. P-DCOPs have been applied to
a mobile wireless network problem, where the objective is to choose agent locations
to maximize the signal strength of an ad-hoc communication relay network formed
between the agents [22, 53].

Sequential greedy maximization of submodular functions Submodularity is a property
of a set function often used for proving a bound on the suboptimality of greedy algorithms
in information gathering. The tasks that we target in this paper are in general not approxi-
mately solvable by a greedy algorithm. Below we discuss how information gathering prob-
lems are formulated to allow use of greedy submodular maximization with suboptimality
bounds. This will help the reader build a deeper understanding of the challenges this paper
addresses.

The assignment or selection of sensors can be formulated as a selection of a subset
among a larger set of possible choices. The selection corresponds to a choice of which
sensors to apply, where to deploy sensors, or how to operate multiple sensors. The util-
ity of an assignment is then measured by a set function that maps the selected subset to a
real-valued utility. Several set functions relevant for active information gathering such as
mutual information and entropy are submodular. Informally, the submodularity property
of a set function encodes the intuition that the marginal benefit of deploying a new sensor
is reduced as we deploy more and more sensors. A sequential greedy algorithm is often
applied to approximately maximize submodular functions. Such an algorithm sequentially
finds the item with the greatest marginal utility, and inserts it into the current subset of
selected items. The selection is repeated until a subset with the required number of items
has been obtained. Maximization of a submodular set function by this greedy approach
results in an approximation within at most a factor of (1 − 1∕e) from an optimal solution.
Consequently, this selection method has been applied to optimize sensor placements under
a Gaussian process model of spatial phenomena [24]. In this approach, mutual information
between the selected sensing locations and the rest of the space is maximized.

In multi-agent active information gathering, submodular function maximization under
a matroid constraint is especially relevant. A matroid is a mathematical structure that
generalizes the notion of linear independence from vector spaces to sets. In multi-agent
active information gathering, the independent sets in a matroid correspond to possible
joint actions or sensing strategies of each of the agents in a team. Approximation guaran-
tees for the sequential greedy algorithm outlined above can also be proven for submodular
maximization under a matroid constraint [10]. A distributed algorithm based on greedy
maximization for multi-robot exploration is proposed in [12]. As the proposed algorithm
runs in parallel on all of the agents, the required time of planning is reduced compared to
sequential planning for each agent in turn, e.g., as proposed in [4]. To simplify the prob-
lem, Corah and Michael [12] plan over sequences of actions rather than over closed-loop

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 7 of 44 42

policies. Contrary to a Dec-POMDP model, a fully connected communication network and
a shared belief state among all agents are assumed.

In distributed submodular optimization under a matroid constraint, the information an
agent has about the actions of other agents affects the approximation quality obtained with
the greedy algorithm. Gharesifard and Smith [17] assume each agent knows the strategies
of its neighbouring agents, as defined by a communication graph. A local greedy algorithm
is found to approximate an optimal solution within a factor inversely proportional to the
clique number of the communication graph: the larger the maximum clique in the graph,
the better the approximation factor.

Adapting single-agent POMDPs Single-agent POMDPs feature imperfect knowledge
of the underlying true state in a system, uncertain action effects and noisy observations.
If instantaneous communication and centralized control are assumed, multi-agent active
perception may be treated as a POMDP under the control of a central controller that deter-
mines the actions of all individual agents [45, 50].

When strong centralization assumptions are infeasible, POMDP techniques may be
adapted to multi-agent active information gathering by adding additional coordination
mechanisms. A notable example is [11], where a decentralization scheme based on an auc-
tion mechanism is proposed. Each agent is assumed to play one of a finite set of roles or
behaviours. Each role corresponds to a specific local reward function that depends on the
local state and action of the agent playing the role. The complete reward function is defined
as the sum of local reward functions and a joint reward function modelling agent coopera-
tion. At run-time, each individual agent first solves a centralized multi-agent POMDP plan-
ning problem to compute a policy and its value for each of the potential roles. An auction
algorithm is applied for task allocation where the cost of assigning a policy to an agent
is equal to the negative value of the policy, resulting in high-value policies likely being
assigned to each agent. The resulting approach requires some communication between the
agents to facilitate the bidding, but can avoid the computational complexity of planning in
a Dec-POMDP. The approach is demonstrated in two scenarios, environmental monitoring
and cooperative tracking.

Other related work Multi-agent information gathering may be formulated as an open-
loop planning problem, where the solution is a sequence of actions or a path to be traversed
for each agent. These approaches ignore the adaptivity of Dec-POMDP solutions that allow
agents to modify their behaviour conditional on the observations received at run-time.
Instead, if communication is possible at some time after starting execution of the paths,
replanning may be applied to update the solution based on the information acquired up to
that time. An example of decentralized open-loop planning with periodic communication
is the decentralized Monte Carlo tree search (Dec-MCTS) algorithm [9]. The agents are
first provided with initial information of each others’ plans. Each agent in a team runs an
instance of MCTS to optimize its local actions, assuming the other agents will act accord-
ing to their last known plan. The updated plans found via local MCTS instances are peri-
odically communicated between the agents, and planning is restarted. Hollinger and Singh
[21] formalize multi-agent exploration as path planning in a time-expanded graph. Instead
of assuming communication links exist between agents, feasible paths are constrained in a
way that agents will periodically be within communication range. While in communication
range, the agents share information and may replan to update the subsequent paths.

Several works propose to derive a control policy for each individual agent that follows
the gradient of mutual information [5, 23]. Joint belief states are updated via agent-to-
agent communication. Communication links are described by a graph, and convergence of
the state estimate to the true value is shown in the case of a connected graph.

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 8 of 44

The problem of planning policies for multi-agent active information gathering can be
simplified if assumptions are made regarding the dynamics of the state transitions and the
observation processes of the agents. Schlotfeldt et. al. [46] investigate a problem with a
deterministic state transition model with a linear-Gaussian model of the observation pro-
cess. The joint belief state in this case is Gaussian and may be tracked by a Kalman filter
(see, for example, [44, Sect. 4.3]). In particular, the covariance matrix of the Gaussian
is independent of the actual measurement values recorded. The covariance matrix only
depends on the deterministic state trajectory of the agent. This allows planning a policy for
active information gathering by solving an open loop control problem, analogous to similar
approaches in classical control theory where a measurement subsystem can be controlled
independently of the overall plant control task [30]. Schlotfeldt et. al. [46] search policies
for each agent sequentially, assuming the other agents’ plans are fixed. A distributed esti-
mation scheme is proposed to enable decentralization, requiring a connected communica-
tion graph to guarantee state estimate convergence.

Distributed hypothesis testing [26] targets a scenario where a stationary hidden state
(hypothesis) should be inferred from noisy observations recorded by a team of agents. The
agents perform local Bayesian belief updates, and communicate the updates to neighbour-
ing agents. A consensus algorithm is applied to fuse the updates from neighbours into an
updated local belief with convergence guarantees. Active distributed hypothesis testing
where each agent can choose among a finite set of sensing actions is considered by Lalitha
and Javidi [25]. They characterize randomized action strategies that ensure that the maxi-
mum likelihood estimate of the hypothesis converges to the true hypothesis.

2.2 Decentralized POMDPs

In this subsection, we first provide a brief summary of the state-of-the-art in Dec-POMDPs
with linear reward functions. The expected value of a reward function that depends on the
hidden state and action is a linear function of the joint belief. These types of rewards are
standard in Dec-POMDPs. Then, we describe related work in active information gathering
in single-agent POMDPs and Dec-POMDPs that are especially relevant for the work pre-
sented in this paper. These works target problems with a reward function that is convex in
the joint belief, allowing convenient modelling of information gathering tasks.

Dec-POMDPs with linear reward functions The computational complexity of finding an
optimal decentralized policy for a finite-horizon Dec-POMDP is NEXP-complete [7], that
is, double-exponential w.r.t. the planning horizon. It is also NEXP-complete to compute
solutions with an absolutely bounded error [43].

Exact algorithms for Dec-POMDPs may apply either backwards in time dynamic pro-
gramming [19], or forwards in time heuristic search [38, 52]. It can also be shown that
a Dec-POMDP is equivalent to a special case of a POMDP that is completely unobserv-
able [14, 29, 36]. The state space of this POMDP is the set of possible plan-time sufficient
statistics [35], which are joint distributions over the hidden state and the histories of the
agents’ actions and observations given the past policies executed by the agents. The actions
correspond to selecting the next decision rules for the agents. An optimal policy for such
a non-observable POMDP is an optimal sequence of local decision rules for each agent,
which corresponds to an optimal solution of the equivalent Dec-POMDP. This insight has
allowed adaptation of POMDP algorithms for solving Dec-POMDPs [14].

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 9 of 44 42

Approximate and heuristic methods for solving Dec-POMDPs have been proposed, e.g.,
based on finding locally optimal “best response” policies for each agent [33], memory-
bounded dynamic programming [47], cross-entropy optimization over the space of poli-
cies [40, 41], or monotone iterative improvement of fixed-size policies [42]. Algorithms
for special cases such as goal-achievement Dec-POMDPs [2] and factored Dec-POMDPs
[39] have also been proposed.

Structural properties, such as transition, observation, and reward independence between
the agents, can also be leveraged and may even result in a problem with a lesser compu-
tational complexity [1]. Some Dec-POMDP algorithms [38] take advantage of plan-time
sufficient statistics. The sufficient statistics provide a means to reason about possible distri-
butions over the hidden state, also called joint beliefs, reached under a given policy.

No implicit communication between the agents is assumed in the Dec-POMDP frame-
work. However, communication may be explicitly included into the Dec-POMDP model
if desired, leading to the so-called Dec-POMDP-Com model [18]. Spaan et. al. [49] also
include communication into their Dec-POMDP model but in addition split state features
into local and shared global ones making belief tracking, as in POMDP models, possible.
In another line of work, Wu et. al. [56] investigate online decision making in Dec-POM-
DPs. Their goal is to reduce the amount of communication needed in online Dec-POMDP
planning: agents re-synchronize with other agents whenever the behavior of other agents
changes sufficiently from the expected behavior.

Active Information Gathering in POMDPs and Dec-POMDPs In the context of single-
agent POMDPs, Araya-López et al. [3] argue that information gathering tasks are natu-
rally formulated using a reward function that is a convex function of the state informa-
tion and introduce the �POMDP model with such a reward. This enables application of,
for example, the negative Shannon entropy of the state information as a component of the
reward function. Under a locally Lipschitz continuous reward function, an optimal value
function of a �POMDP is Lipschitz-continuous [15] which may be exploited in a solution
algorithm.

Spaan et. al. [50] introduce an alternative formulation for information gathering in sin-
gle agent POMDPs that assumes problem specific state features and for each state feature a
special action for committing to a specific value of the state feature. This allows for reward-
ing information gathering without changing the POMDP optimization process at the cost
of growing the action space and the need for selecting features. Subsequently, it was proven
that a �POMDP with a piecewise linear and convex reward function can be transformed
into a standard POMDP with a linear reward function [45]. The key to making the trans-
formation is to augment the action space of the POMDP by adding a prediction action for
each of the linear components of the �POMDP reward function. The reward function for
the new prediction actions is set to return the reward of the corresponding component of
the �POMDP reward function. The conversion also allows an optimal solution for either
problem to be transformed into an optimal solution of the other problem in polynomial
time.

In this article, we present the first heuristic algorithm for Dec-POMDPs with rewards
that depend non-linearly on the joint belief. Our algorithm is based on the combination of
the idea of using a fixed-size policy represented as a graph [42] with plan-time sufficient
statistics [35] to determine joint beliefs at the policy graph nodes. The local policy at
each policy graph node is then iteratively improved, monotonically improving the value of
the node. We show that if the reward function is convex in the joint belief, then the value

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 10 of 44

function of any finite-horizon Dec-POMDP policy is convex as well. This is a generaliza-
tion of a similar result known for single-agent POMDPs [3]. Lauri et. al. [27] directly
apply the ideas presented in [3] to the Dec-POMDP setting by modifying an existing
search tree based Dec-POMDP algorithm that can solve small problems. However, our new
approach allows us to derive a lower bound for the value of a policy. We empirically show
that an algorithm maximizing this lower bound finds high quality solutions. Thus, com-
pared to prior state-of-the-art in Dec-POMDPs with convex rewards [27], our algorithm is
capable of handling problems an order of magnitude larger.

We do not require any communication between agents during task execution, and do not
make any distributional assumptions about the state transition or observation models.

3 Decentralized POMDPs

We next formally define the Dec-POMDP problem we consider. Contrary to most earlier
works, we define the reward as a function of state information and action. This allows us
to model information acquisition problems. We choose the finite-horizon formulation to
reflect the fact that a decentralized information gathering task should have a clearly defined
end after which the collected information is pooled and subsequent inference or decisions
are made.

A finite-horizon Dec-POMDP is a tuple (T, I, S, {Ai} , {Zi} , Ps , Pz , b0,{�t}) , where

• T ∈ ℕ is the problem time horizon. In other words, time steps t = 0, 1,… , T are consid-
ered in the problem.

• I = {1, 2,… , n} is a set of agents.
• S is a finite set of hidden states. We write st for a state at time t.
• {Ai} and {Zi} are the collections of finite local action and local observation sets of each

agent i ∈ I , respectively. The local action and observation of agent i at time t are writ-
ten as at

i
∈ Ai and zt

i
∈ Zi , respectively. We write as A and Z the Cartesian products of

all Ai or Zi , respectively. Furthermore, the joint action and observation at time t are
written as at = (at

1
,… , at

n
) ∈ A and zt+1 = (zt+1

1
,… , zt+1

n
) ∈ Z , respectively.

• Ps is the state transition probability that gives the conditional probability Ps(st+1 ∣ st, at)
of the new state st+1 given the current state st and joint action at.

• Pz is the observation probability that gives the conditional probability Pz(zt+1 ∣ st+1, at)
of the joint observation zt+1 given the state st+1 and previous joint action at.

• b0 ∈ �(S) is the initial state distribution,1 also called the joint belief, at time t = 0.
• �t ∶ �(S) × A → ℝ are the reward functions at times t = 0,… , T − 1 , while

�T ∶ �(S) → ℝ determines a final reward obtained at the end of the problem horizon.

Most works in Dec-POMDPs up to date define state-dependent reward functions of the
form Rt ∶ S × A → ℝ and RT ∶ S → ℝ for time steps t = 0, 1,… , T − 1 and t = T , respec-
tively. The Dec-�POMDP with belief-dependent reward functions as defined above gen-
eralizes a Dec-POMDP with state-dependent rewards. The standard Dec-POMDP with a
state-dependent reward function is recovered by choosing the belief-dependent reward to

1 We denote by �(S) the space of probability mass functions over S.

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 11 of 44 42

equal the expected state-dependent reward, that is, �t(b, a) ∶= �s∼b[Rt(s, a)] . We choose the
symbol �t for belief-dependent rewards to distinguish from state-dependent reward func-
tions and to be consistent with [3] that in part inspired this work.

The Dec-POMDP starts from some state s0 ∼ b0 . Each agent i ∈ I then selects a local
action a0

i
 , and the joint action a0 = (a0

1
,… , a0

n
) is executed. The time step is incremented,

and the state transitions according to Ps , and each agent perceives a local observation z1
i
 ,

where the likelihood of the joint observation z1 = (z1
1
,… , z1

n
) is determined according to

Pz . The action selection and observation process repeats similarly until t = T when the task
ends.

Optimally solving a Dec-POMDP means to design a policy for each agent that encodes
which action the agent should execute conditional on its past observations and actions; in
a manner such that the expected sum of rewards collected is maximized. In the following,
we make the notion of a policy exact, and determine the expected sum of rewards collected
when executing a policy.

3.1 Histories and policies

At any time step while the agents are executing actions in a Dec-POMDP, each agent only
has knowledge of its own past local actions and observations and the initial state distribu-
tion b0 . Each agent may decide on its next local action based on this knowledge. We for-
malize the information available to agent i at time t as a local history. At the starting time
t = 0 the information available to any agent i is completely described by a local history
h0
i
= b0 . On subsequent time steps t ≥ 1 , the local history ht

i
 of any agent i belongs to the

local history set

Analogously, we define the joint history set
Ht = {(b0, a0, z1,… , at−1, zt) ∣ ∀k ∶ ak ∈ A, zk ∈ Z} for joint actions and observa-
tions. Given a joint history ht , we may view its composite local histories as the tuple
(ht

1
,… , ht

n
) , or vice versa. Both the local and joint histories satisfy the recursion of the

form ht = (ht−1, at−1, zt).
In general, a local policy for agent i is a set of mappings Ht

i
↦ Ai , one for every

t = 0, 1,… , T − 1 . Such a local policy determines the next action the agent should take
conditional on any possible local history up to the current time. The fact that local policies
only depend on an agent’s local actions and observations is a key feature of Dec-POMDPs
which ensures that an agent can execute its local policy in a decentralized manner, without
knowledge about the other agents’ actions and observations. A solution of a Dec-POMDP
is in turn a joint policy, which is the collection of all agents’ local policies. An optimal
solution is a joint policy that maximizes the expected sum of rewards obtained when each
agents acts according to its local policy contained in the joint policy.

We define a local policy as a particular kind of finite state controller (FSC) following
[42]. This choice allows a compact representation of policies by viewing them as FSCs
with few nodes. Furthermore, as we will argue later, increasing the number of nodes allows
retaining the generality of the definition given in the paragraph above.

Ht
i
= {(b0, a0

i
, z1

i
,… , at−1

i
, zt

i
) ∣ ∀k ∶ ak

i
∈ Ai, z

k
i
∈ Zi}.

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 12 of 44

Definition 1 (Local policy) For agent i, a local policy is �i = (Qi, qi,0, �i, �i) , where Qi
is a finite set of nodes, qi,0 ∈ Qi is a starting node, �i ∶ Qi → Ai is an output function that
determines which action to take, and �i ∶ Qi × Zi → Qi is a node transition function that
determines the next node conditional on the last observation.

This definition coincides with that of a Moore machine [31]. Another useful way to
view a local policy is as a directed acyclic graph, where policy execution is equivalent to
graph traversal starting from the specified starting node. Figure 2 shows an example of
such a local policy graph, along with a description of how the local policy is executed. The
depicted local policy is suitable for a problem with a horizon T = 3.

An arbitrary node may be reached by zero (in case the node has no in-edges), one, or
more than one local histories. This will be important in our subsequent analysis of the
problem and the proposed solution algorithm. For example, in the case of Fig. 2, node
qi,3 is reachable by three local histories, namely (b0, ai,0, zi,0, ai,1, zi,0) , (b0, ai,0, zi,0, ai,1, zi,1) ,
and (b0, ai,0, zi,1, ai,2, zi,1) . The first two of these local histories traverse through the nodes
qi,0 → qi,1 → qi,3 , while the last local history traverses through nodes qi,0 → qi,2 → qi,3 .
Although the local histories are different, the action to be taken next after experiencing
them is the same, �i(qi,3) = ai,1.

Next, we formally define the concept of a joint policy that is a collection of each agent’s
local policies.

Definition 2 (Joint policy) Given local policies �i = (Qi , qi,0 , �i , �i) for all agents
i ∈ I , the corresponding joint policy is the tuple � = (Q, q0, � , �) , where Q is the Car-
tesian product of all Qi , q0 = (q1,0,… , qn,0) ∈ Q is the initial node, and for an arbitrary
joint policy node q = (q1,… , qn) ∈ Q and joint observation z = (z1,… , zn) ∈ Z , the
output function � ∶ Q → A determines the joint action to take in a node according to
�(q) = (�1(q1),… , �n(qn)) , and the node transition function � ∶ Q × Z → Q is defined such
that �(q, z) = (�1(q1, z1),… , �n(qn, zn)).

qi,0

Q0
i

qi,1

qi,2

Q1
i

qi,3

qi,4

Q2
i

zi,0

zi,1

zi,0

zi,1

zi,0

zi,1

Node qi Action γi(qi)

qi,0 ai,0
qi,1 ai,1
qi,2 ai,2
qi,3 ai,1
qi,4 ai,0

Fig. 2 A local policy �i = (Qi, qi,0, �i, �i) for agent i with local action space Ai = {ai,0, ai,1, ai,2} and local
observation space Zi = {zi,0, zi,1} represented as a directed acyclic graph. The shaded circles show the set
of nodes Qi , the starting node is qi,0 . The dashed boxes indicate the subsets Qt

i
⊂ Qi of nodes reachable at

time t. The table on the right shows the output function �i that determines the action to take in any node.
The node transition function �i is indicated by the out-edges from each node: for example, �i(qi,0, zi,0) = qi,1 .
Execution of the policy is equivalent to traversal of the graph starting from the initial node, taking actions
indicated by �i , and transitioning to the next node conditional on the next observation according to �i

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 13 of 44 42

Figure 3 shows an example of a joint policy constructed from two local policies
using the definition above. The nodes q ∈ Q in the joint policy graph are tuples of nodes
in the local policy graphs: Q = Q1 × Q2 . For example, the node q = (q1,3, q2,3) indicates
that both agents i are currently executing their respective local policies �i at node qi,3 .
The dashed boxes indicate the subsets Qt ⊂ Q of nodes reachable at time t. The node
output function � and node transition function � of the joint policy are constructed from
the corresponding function �i and �i of the local policies, respectively, as described in
Definition 2. From each node q ∈ Q , there is now an out edge for each joint observa-
tion z ∈ Z . As is the case for local policies, also in a joint policy a given node may be
reached by zero, one, or more than one joint history. Since a joint policy is constructed
from local policies that are decentrally executable, the joint policy is also decentrally
executable.

The generality of the policy representation is maintained, as any finite horizon local
policy can be represented by a local policy graph with sufficiently many nodes. If the size
of the local policy graph is grown sufficiently a graph where each node is reachable by a
single unique local history can be created. Such a policy graph is in fact a tree and can
represent any possible mapping from local histories to local actions and thus any possible
local policy. A joint policy composed of such trees is a so-called pure deterministic policy
for a Dec-POMDP in the sense that an agent’s local observation history is sufficient to
determine the agent’s next action. It is known that there exists an optimal pure policy in

(q1,0, q2,0)

Q0

(q1,1, q2,1)

(q1,1, q2,2)

(q1,2, q2,1)

(q1,2, q2,2)

Q1

(q1,3, q2,3)

(q1,3, q2,4)

(q1,4, q2,3)

(q1,4, q2,4)

Q2

(z1,0, z2,0)

(z1,0, z2,1)

(z1,1, z2,0)

(z1,1, z2,1)

(·, ·)

(·, z2,0)

(·, z2,1)

(z1,1, ·)

(z1,0, ·)

(z1,1, z2,1)

(z1,0, z2,1)

(z1,0, z2,0)

(z1,1, z2,0)

Fig. 3 A joint policy � = (Q, q0, � , �) composed of two local policies �1 and �2 that are identical to the
one shown in Fig. 2. For clarity, we denote existence of parallel edges by single edges with labels such as
(⋅, z2,1) , which indicates there are parallel edges for joint observations where the local observation of agent 1
can assume any value, and the local observation of agent 2 is z2,1

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 14 of 44

every Dec-POMDP [40]. Since a tree can represent an optimal policy, the policy graph
representation we choose can also represent an optimal policy given enough nodes. Con-
sequently, our main theoretical results hold in the general case, and are not limited to our
particular policy representation. Our emphasis in this paper is on compact local policies
that are not trees and are not guaranteed to be able to represent an optimal policy. We refer
the reader to [40] for further discussion of possible types of policies for Dec-POMDPs.

To close this subsection, we give a technical condition for policy graphs that constrains the
structure of local policies. The condition, called temporal consistency, ensures that each node
can be identified with a unique time step.

Definition 3 (Temporal consistency) A local policy �i = (Qi , qi,0 , �i , �i) is temporally
consistent if there exists a partition Qi =

⋃T−1

t=0
Qt

i
 where Qt

i
 are pairwise disjoint and non-

empty, Q0
i
= {qi,0} , and for any t = 0,… , T − 2 , for qt

i
∈ Qt

i
 , for all zi ∈ Zi , �i(qti, zi) ∈ Qt+1

i
.

In a temporally consistent policy, at a node in Qt
i
 the agent has (T − t) decisions left until

the end of the problem horizon. Temporal consistency guarantees that exactly one node in
each set Qt

i
 can be visited, and that after visiting a node in Qt

i
 , the next node will belong to

Qt+1
i

 . Temporal consistency naturally extends to joint policies, such that there exists a parti-
tion of Q by pairwise disjoint sets Qt . In Figs. 2 and 3, the sets Qt

i
 and Qt are indicated by the

dashed boxes. Throughout the rest of the article, we assume temporal consistency holds for
all policies. The assumption of temporal consistency does not restrict our proposed method, it
merely allows us to refer to a subset of nodes reachable at a particular time step.

3.2 Bayes filter

While planning policies for information gathering, it is useful to reason about the joint belief
of the agents given some joint history. This can be done via recursive Bayesian filtering, see
[44] for a general overview of the topic. Recursive Bayesian filtering is a process by which the
probability mass function over the hidden state of the system is estimated given a joint history
and the state transition and observation probability models of the Dec-POMDP. Recall that
during policy execution agents only perceive their own local actions and observations. Thus,
Bayesian filtering typically cannot be achieved online by an individual agent as it lacks the
necessary information. However, if the local policies of each agent are planned centrally as is
the usual case in Dec-POMDPs, Bayesian filtering may be applied during planning to reason
about the possible joint beliefs the system may reach.

We now describe the discrete Bayesian filter we use to track the joint belief. The initial
joint belief b0 is a function of the state at time t = 0 , and for any state s0 ∈ S , b0(s0) is equal to
the probability P(s0 ∣ h0) . When a joint action a0 is executed and a joint observation z1 is per-
ceived, we find the posterior belief P(s1 ∣ h1) where h1 = (h0, a0, z1) applying a Bayes filter.
For notational convenience, we drop the explicit dependence of bt on the joint history in the
following. In general, given any current joint belief bt corresponding to some joint history ht ,
and a joint action at and joint observation zt+1 , the posterior joint belief is calculated by

(1)bt+1(st+1) =

Pz(zt+1 ∣ st+1, at)
∑
st∈S

Ps(st+1 ∣ at, st)bt(st)

�(zt+1 ∣ bt, at)
,

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 15 of 44 42

where

is the normalization factor equal to the prior probability of observing zt+1 . Given b0 and
any joint history ht = (b0,a0,z1 , … , at−1 , zt) , repeatedly applying Eq. (1) yields a sequence
b0, b1,… , bt of joint beliefs. We shall denote the application of the Bayes filter (Eq. (1)) by
the shorthand notation

Furthermore, we shall denote the filter that recovers bt given ht by repeated application of �
by a function � ∶ Ht

→ �(S) , that is,

The innermost application of � recovers b1 given b0 , a0 , and z1 . The output is the input to
the next application of � together with a1 and z2 . This process is repeated until the tth appli-
cation of � which outputs bt.

3.3 Value of a policy

The value of a joint policy � = (Q, q0, � , �) is equal to the expected sum of rewards col-
lected when acting according to the policy, starting from the initial joint belief. To
characterize the value of a policy, we define value functions V�

t
∶ �(S) × Qt

→ ℝ for
t = T , T − 1,… , 0 using a backwards in time dynamic programming principle. Each
V�
t
(b, q) gives the expected sum of rewards when following policy � until the end of the

horizon when t decisions have been taken so far, for any joint belief b ∈ �(S) and any pol-
icy node q ∈ Qt . Then, V�

0
(b0, q0) is the value of the policy.

We start with time step t = T which is a special case when all actions have already
been taken, and the value function only depends on the joint belief and is equal to the final
reward: VT (b) = �T (b).

For t = T − 1 , one decision remains, and the remaining expected sum of rewards of exe-
cuting policy � is equal to

that is, the sum of the immediate reward and the expected final reward at time T. From
above, we define V�

t
 iterating backwards in time for t = T − 2,… , 0 as

The objective is to find an optimal policy �∗ ∈ argmax
�

V�
0
(b0, q0) whose value is greater

than or equal to the value of any other policy.

(2)�(zt+1 ∣ bt, at) =
∑
st+1∈S

Pz(zt+1 ∣ st+1, at)
∑
st∈S

Ps(st+1 ∣ at, st)bt(st)

(3)bt+1 = � (bt, at, zt+1).

(4)
bt = �(ht) = � (� (… � (�

⏟⏞⏞⏞⏟⏞⏞⏞⏟
t times

(b0, a0, z1), a1, z2)…)).

(5)V�

T−1
(b, q) = �T−1(b, �(q)) +

∑
z∈Z

�(z ∣ b, �(q))VT (� (b, �(q), z)),

(6)V�

t
(b, q) = �t(b, �(q)) +

∑
z∈Z

�(z ∣ b, �(q))V�

t+1
(� (b, �(q), z), �(q, z)).

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 16 of 44

4 Value of a policy node

Executing a policy corresponds to a stochastic traversal of the policy graphs (Fig. 2) condi-
tional on the observations perceived. In this section, we first answer two questions related to
this traversal process. First, given a history, when is it consistent with a policy, and which
nodes in the policy graph will be traversed (Sect. 4.1)? Second, given an initial state distribu-
tion, what is the probability of reaching a given policy graph node, and what are the relative
likelihoods of histories if we assume a given node is reached (Sect. 4.2)? With the above ques-
tions answered, we define the value of a policy graph node both in a joint and in a local policy
(Sect. 4.3). These values will be useful in designing a policy improvement algorithm for Dec-
POMDPs. Probabilities of joint histories conditioned on the local information of one agent
have been derived earlier for reasoning what one agent can know about the experiences of
other agents [33]. Oliehoek [35] introduces plan-time sufficient statistics describing the joint
distribution over hidden states and joint observation histories. Our derivation here is methodo-
logically similar, but we consider explicitly the setting where a policy is represented as a graph
and reason about reachability probability of a policy graph node that summarizes multiple
joint histories, rather than the reachability probability of a particular joint history.

4.1 History consistency

A history is consistent with a policy when executing the policy could have resulted in the
given history. In the context of policy graphs defined in Sect. 3.1, consistency means that the
actions in the history are equal to those that would be taken by the policy conditional on the
observations in the history.

Definition 4 (History consistency) We are given for all i ∈ I the local policy �i = (Qi,qi,0
,�i,�i) , and the corresponding joint policy � = (Q,q0,�,�) .

1. A local history ht
i
= (b0, a

0
i
, z1

i
,… , at−1

i
, zt

i
) is consistent with � if the sequence of nodes

(q0
i
, q1

i
,… , qt

i
) where q0

i
= qi,0 is the initial node and qk

i
= �i(q

k−1
i

, zk
i
) for k = 1,… , t

satisfies: ak
i
= �i(q

k
i
) for every k. We say ht

i
 ends at qt

i
∈ Qt

i
 under �.

2. A joint history ht = (ht
1
,… , ht

n
) is consistent with � if for all i ∈ I , ht

i
 is consistent with

� and ends at qt
i
 . We say ht ends at qt = (qt

1
,… , qt

n
) ∈ Qt under �.

Due to temporal consistency, any ht
i
∈ Ht

i
 consistent with a policy will end at some qt

i
∈ Qt

i
 .

Similarly, any ht ∈ Ht ends at some qt ∈ Qt.

4.2 Node reachability probabilities

Above, we have defined when a history ends at a particular node. Using this definition, we
now derive the joint probability mass function (pmf) P(qt, ht ∣ �) of policy nodes and joint
histories given that a particular policy � is executed.

We note that P(qt, ht ∣ �) = P(qt ∣ ht,�)P(ht ∣ �) and first consider P(ht ∣ �) . The
unconditional a priori probability of experiencing the joint history h0 = (b0) is P(h0) = 1 .
For t ≥ 1 , the unconditional probability of experiencing ht is obtained recursively by
P(ht) = �(zt ∣ �(ht−1), at−1)P(ht−1) . Conditioning P(ht) on a policy yields P(ht ∣ �) = P(ht) if

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 17 of 44 42

ht is consistent with � and 0 otherwise. Next, we have P(qt ∣ ht,�) =
∏

i∈I P(q
t
i
∣ ht

i
,�) , with

P(qt
i
∣ ht

i
,�) = 1 if ht

i
 ends at qt

i
 under � and 0 otherwise.

Combining the above, the joint pmf is defined as

Marginalizing over ht , the probability of ending at node qt under � is

and by definition of conditional probability,

We now find the probability of ending at qt
i
 under � . Let Qt

−i
 denote the Cartesian prod-

uct of all Qt
j
 except Qt

i
 , that is,

Then qt
−i

∈ Qt
−i

 denotes the nodes for all agents except i. We have (qt
−i
, qt

i
) ∈ Qt . The prob-

ability of ending at qt
i
 under � is

where the sum terms are determined by Eq. (7). Again, by definition of conditional
probability,

where the term in the numerator is obtained from Eq. (7).

4.3 Value of policy nodes

We define the values of a node in a joint policy and an individual policy.

Definition 5 (Value of a joint policy node) Given a joint policy � = (Q, q0, � , �) , the
value of a node qt ∈ Qt is defined as

where P(ht ∣ qt,�) is defined in Eq. (8) and �(ht) is the joint belief corresponding to history
ht as given in Eq. (4).

P(qt, ht ∣ �) =

{
P(ht) if ht ends at qt under �

0 otherwise
.

(7)P(qt ∣ �) =
∑
ht∈Ht

P(qt, ht ∣ �),

(8)P(ht ∣ qt,�) =
P(qt, ht ∣ �)

P(qt ∣ �)
.

Qt
−i

=
∏
j ∈ I

j ≠ i

Qt
j
.

(9)P(qt
i
∣ �) =

∑
qt
−i
∈Qt

−i

P
(
(qt

−i
, qt

i
) ∣ �

)
,

(10)P(qt
−i

∣ qt
i
,�) =

P
(
(qt

−i
, qt

i
) ∣ �

)
P(qt

i
∣ �)

,

V�

t
(qt) =

∑
ht∈Ht

P(ht ∣ qt,�)V�

t
(�(ht), qt),

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 18 of 44

To give intuition about the definition above, consider the joint policy � in Fig. 3, and
suppose qt = (q1,3, q2,4) . This node can be reached by three joint histories that correspond
to the following three sequences of joint observations, listed as tuples of local observa-
tions:

(
(z1,0, z2,1), (z1,0, z2,0)

)
 ,
(
(z1,0, z2,1), (z1,1, z2,0)

)
 , and

(
(z1,1, z2,1), (z1,1, z2,0)

)
 . Note that the

out-edge of qt labeled with (⋅, z2,0) corresponds to two joint observations as described in the
figure caption. The probabilities of joint histories are quantified by P(ht ∣ qt,�) , which can
be computed as outlined in Sect. 4.2. This probability can be non-zero only for the three
joint histories that end in qt . The value of the node, V�

t
(qt) is obtained by taking the expec-

tation of V�
t
(�(ht), qt) under the pmf of histories.

Another example for an arbitrary node qt of a policy � is shown in Fig. 4. Here, the
horizontal axis indicates the joint belief state in a Dec-POMDP with two underlying hid-
den states. The joint belief in this case is represented by a single real number denoting
the probability of the first of these two states. The red curve depicts the value function
V�
t
(bt, qt) of the policy. The blue circle markers corresponding to the blue right-hand ver-

tical axis depict the pmf P(ht ∣ qt,�) of histories at the node. The value V�
t
(qt) above is

defined as the expectation of the value function (red curve) under the pmf of histories (blue
circle markers).

Definition 6 (Value of a local policy node) For i ∈ I , let �i = (Qi, qi,0, �i, �i) be the local
policy and let � = (Q, q0, � , �) be the corresponding joint policy. For any i ∈ I , the value of
a local node qt

i
∈ Qt

i
 is

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0
V π
t (bt, qt)

bt := τ(ht)

V
π t
(b

t
,q

t
)

0

0.2

0.4

0.6

0.8

1

P
(h

t
|q

t
,π

)

Fig. 4 An example of the value function of a node and its lower bound. The horizontal axis denotes the
joint belief in a two-state Dec-POMDP as a real number indicating the probability of the first state. On the
red left-hand vertical axis the value function V�

t
(bt , qt) of the policy is drawn as a convex function of the

joint belief. The blue right-hand vertical axis denotes the probability of joint histories, and the three lines
with blue circle markers denote an example of a distribution P(ht ∣ qt ,�) of joint belief states at a joint
policy graph node. The exact value V�

t
(qt) of the node is calculated as the expectation of the value function

V�
t
(bt , qt) under P(ht ∣ qt ,�) . A lower bound for the value of the node is found by instead taking the value

function at the expected joint belief state as indicated by the dashed lines

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 19 of 44 42

where P(qt
−i

∣ qt
i
, �) is defined in Eq. (10).

The value of a local node qt
i
 is equal to the expected value of the joint node (qt

−i
, qt

i
)

under qt
−i

∼ P(qt
−i

∣ qt
i
,�) . Suppose we wish to quantify the value of a local node qt

i

of agent i. From the perspective of agent i, it is not aware of which local policy nodes
the other agents in their respective local policies are located at. However, since agent i
is aware of the local policies of all agents, it can deduce which local policy nodes are
possible for the other agents. These are the local policy nodes of agents other than i
at the same time step as qt

i
 , that is, the nodes in Qt

−i
 . As an example, consider the case

depicted in Fig. 3 and suppose we wish to compute the value of qt
1
= q1,3 for agent 1.

The second agent’s node qt
2
 belongs to Qt

2
= {q2,3, q2,4} . The probability of the sec-

ond agent being in either of these two nodes is obtained from P(qt
2
∣ qt

1
,�) as outlined

in Sect. 4.2. According to the definition above, the value of q1,3 is then computed as
P(q2,3 ∣ q1,3,�)V

�
t
((q1,3, q2,3)) + P(q2,4 ∣ q1,3,�)V

�
t
((q1,3, q2,4)).

5 Convex‑reward Dec‑POMDPs

In this section, we prove several results for the value function of a Dec-POMDP whose
reward function is convex in �(S) . Convex rewards are of special interest in information
gathering. This is because of their connection to so-called uncertainty functions [13],
which are non-negative functions concave in �(S) . Informally, an uncertainty function
assigns large values to uncertain beliefs, and smaller values to less uncertain beliefs. Nega-
tive uncertainty functions are convex and assign high values to less uncertain beliefs, and
are suitable as reward functions for information gathering. Examples of uncertainty func-
tions include Shannon entropy, generalizations such as Rényi entropy, and types of value of
information, for example, the probability of error in hypothesis testing.

The following theorem shows that if the immediate reward functions are convex in the
joint belief, then the finite horizon value function of any policy is convex in the joint belief.

Theorem 1 If the reward functions �T ∶ �(S) → ℝ and �t ∶ �(S) × A → ℝ are convex in
�(S), then for any policy � , VT ∶ �(S) → ℝ is convex and V�

t
∶ �(S) × Qt

→ ℝ is convex in
�(S) for any t.

Proof Let � = (Q, q0, � , �) , and b ∈ �(S) . We proceed by induction (VT (b) = �T (b) is triv-
ial). For t = T − 1 , let qT−1 ∈ QT−1 , and denote by a ∶= �(qT−1) the joint action taken
according to � at this node. From Eq. (5),
V�
T−1

(b, qT−1) = �T−1(b, a) +
∑
z∈Z

�(z ∣ b, a)VT (� (b, a, z)) . We recall from above that VT is

convex, and by Eq. (1), the Bayes filter � (b, a, z) is a linear function of b. The composition
of a linear and convex function is convex, so VT (� (b, a, z)) is a convex function of b. The
non-negative weighted sum of convex functions is also convex, and by assumption �T−1 is
convex in �(S) , from which it follows that V�

T−1
 is convex in �(S).

V�

t
(qt

i
) =

∑
qt
−i
∈Qt

−i

P(qt
−i

∣ qt
i
,�)V�

t

(
(qt

−i
, qt

i
)
)
,

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 20 of 44

Now assume V�
t+1

 is convex in �(S) for some 0 ≤ t ≤ T − 1 . By the definition in Eq. (6)
and the same argumentation as above, it follows that V�

t
 is convex in �(S). ◻

Since a sufficiently large policy graph can represent any policy, we conclude that the
value function of an optimal policy is convex in a Dec-POMDP with a reward function
convex in the joint belief.

The following corollary gives a lower bound for the value of a policy graph node.

Corollary 1 Let gt ∶ Ht
→ [0, 1] be a probability mass function over the joint histories at

time t. If the reward functions �T ∶ �(S) → ℝ and �t ∶ �(S) × A → ℝ are convex in �(S),
then for any time step t, and for any policy � and qt ∈ Qt,

Proof By Theorem 1, V�
t
∶ �(S) × Qt

→ ℝ is convex in �(S) . The claim immediately fol-
lows applying Jensen’s inequality. ◻

Applied to Definition 5, the corollary says the value of a joint policy node qt is lower
bounded by the value of the expected joint belief at qt . An illustration of this lower bound
is shown by the dashed lines in Fig. 4. Applied to Definition 6, we obtain a lower bound for
the value of a local policy node qt

i
 as

where inside the inner expectation we write (qt
−i
, qt

i
) = qt . A lower bound for the value of

any local node qt
i
∈ Qt

i
 is found by finding the values V�

t
(qt) of all joint nodes qt ∈ Qt and

then taking the expectation of V�
t
(qt) where qt = (qt

−i
, qt

i
) under P(qt

−i
∣ qt

i
, �).

As Corollary 1 holds for any pmf over joint histories, it could be applied also with pmfs
other than P(ht ∣ qt,�) . For example, if it is expensive to enumerate the possible histories
and beliefs at a node, one could approximate the lower bound through importance sam-
pling [32, Ch. 23.4].

Since a linear function is both convex and concave, rewards that are state-dependent and
rewards that are convex in the joint belief can be combined on different time steps in one
Dec-POMDP and the lower bound still holds.

In standard Dec-POMDPs, the expected reward is a linear function of the joint belief.
Then, Corollary 1 holds with equality, as shown by the following.

Corollary 2 Consider a Dec-POMDP where the reward functions are defined as
�T (b) =

∑
s∈S

b(s)RT (s) where RT ∶ S → ℝ is a state-dependent final reward function, and for

t = 0, 1,… , T − 1 , �t(b, a) =
∑
s∈S

b(s)Rt(s, a), where Rt ∶ S × A → ℝ are the state-dependent

reward functions. Then, the conclusion of Corollary 1 holds with equality.

Proof Let � = (Q, q0, � , �) and b ∈ �(S) . First note that VT (b) = �T (b) =
∑
s∈S

b(s)RT (s) .

Consider then t = T − 1 , and let qT−1 ∈ QT−1 , and write a ∶= �(qT−1) . Then from the defi-
nition of V�

T−1
 in Eq. (5), consider first the latter sum term which equals

�ht∼g(ht)

[
V�

t
(�(ht), qt)

]
≥ V�

t

(
�ht∼g(ht)

[
�(ht)

]
, qt

)
.

V�

t
(qt

i
) ≥ �qt

−i
∼P(qt

−i
∣qt

i
,�)

[
V�

t

(
�ht∼P(ht ∣qt ,�)

[
�(ht)

]
, qt

)]
,

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 21 of 44 42

which follows by replacing � (b, a, z) by Eq. (1), canceling out �(z ∣ b, a) , and rearranging
the sums. The above is clearly a linear function of b, and by definition, so is �t , the first part
of V�

T−1
 . Thus, V�

T−1
∶ �(S) × QT−1

→ ℝ is linear in �(S) . By an induction argument, it is
now straightforward to show that V�

t
 is linear in �(S) for t = 0, 1,… , T − 1 . Finally,

for any pmf g over joint histories by linearity of expectation. ◻

Corollary 1 indicates that the value of a node is lower bounded by the value of the
expected joint belief in the node. This result has applications in policy improvement algo-
rithms that iteratively improve the value of a policy by modifying the output and node
transition functions at each local policy node. Instead of directly optimizing the value of
a node, the lower bound can be optimized. We present one such algorithm in the next sec-
tion. As shown by Corollary 2, such an algorithm will also work for Dec-POMDPs with a
state-dependent reward function.

6 The nonlinear policy graph improvement algorithm

The Policy Graph Improvement (PGI) algorithm [42] was originally introduced for
Dec-POMDPs with a standard state-dependent reward function that is linear in the joint
belief. PGI monotonically improves policies by locally modifying the output and node
transition functions of the individual agents’ policies. The policy size is fixed, such that
the worst case computation time for an improvement iteration is known in advance.
Moreover, due to the limited size of the policies the method produces compact, under-
standable policies.

We extend PGI to the non-linear reward case, and call the method non-linear PGI
(NPGI). Contrary to tree based Dec-POMDP approaches the policy does not grow double-
exponentially with the planning horizon as we use a fixed size policy. NPGI may improve
the lower bound of the values of nodes (Corollary 1). The lower bound is tight when each
policy graph node corresponds to only one history suggesting we can improve the quality
of the lower bound by increasing policy graph size.

NPGI is shown in Algorithm 1. At each improvement step, NPGI repeats two
steps: the forward pass and the backward pass. In the forward pass, the current best
joint policy is applied to find the set B of expected joint beliefs at every policy graph
node. In the backward pass, we iterate over all local policy graph nodes optimizing the
policy parameters for each of them, that is, the output function and the node transi-
tion function. As output from the backward pass, we obtain an updated policy �+ using
the improved output and node transition functions �+ and �+ , respectively. As NPGI

∑
z∈Z

�(z ∣ b, a)
∑
s�∈S

� (b, a, z)(s�)RT (s
�)

=
∑
s�∈S

[∑
z∈Z

∑
s∈S

Pz(z ∣ s�, a)Ps(s� ∣ a, s)b(s)

]
RT (s

�)

�ht∼g(ht)

[
V�

t
(�(ht), qt)

]
= V�

t

(
�ht∼g(ht)

[
�(ht)

]
, qt

)

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 22 of 44

optimizes a lower bound of the node values, we finally check if the expected sum of
rewards for the improved policy, V�+

0
(b0, q0) , is greater than the value of the current best

policy, and update the best policy if necessary. Similarly as PGI, NPGI is an anytime
algorithm. It may be terminated at any point in time, and the best joint policy recovered
so far may be returned.

In the following, we first give details of the forward pass. Then, we discuss in detail the
most important part of the algorithm, the so-called backward pass. Finally, we close the
section with a discussion of some implementation details.

6.1 The forward pass

Given a joint policy � = (Q, q0, � , �) and an initial joint belief b0 , the forward pass cal-
culates the set B = {bq ∣ q ∈ Q} of expected beliefs bq for each of the joint policy graph
nodes q. We implement the forward pass in two stages, first enumerating the local and joint
histories, and then applying the Bayes filter to find the corresponding belief states along
with their relative likelihoods.

From the local policy graphs �i = (Qi, qi,0, �i, �i) of each agent i (see Fig. 2), we first
enumerate the sets of local histories ending at each of the nodes qi ∈ Qi . This corresponds
to enumeration of all paths in the graph �i . Next, for a given joint policy graph node
q = (q1,… , qn) ∈ Q , we look up the set of local histories for each qi . The set of joint histo-
ries at q is then obtained by enumerating all combinations of local histories. That is, if
there are mi local histories that end at qi , there are

n∏
i=1

mi unique combinations of local histo-

ries, each of which corresponds to one joint history that ends at q.
Now we have enumerated the set of joint histories that ends at q. Recursively using

the Bayes filter, Eq. (4), we obtain for each joint history h a corresponding belief state
�(h) . As described in Sect. 4.2, we also obtain the relative likelihoods P(h ∣ q,�) of
the joint histories. The expected belief state at q is then obtained by
bq =

∑
h

P(h ∣ q,�)�(h).

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 23 of 44 42

6.2 The backward pass

We denote the improved joint policy as �+ = (Q, q0, �
+, �+) . The parameters �+ and �+ of

this policy will be incrementally updated throughout the backward pass. This is done by
iterating over all nodes in the local policy graphs, and solving optimization problems to
maximize the node values. The maximization is done over possible values of the output

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 24 of 44

function and node transition function at the node. At time step t for agent i, for each node
qt
i
∈ Qt

i
 , we maximize either the value V�+

t
(qt

i
) or its lower bound with respect to the local

policy parameters. In the following, we present the details for maximizing the lower bound.
The algorithm for the exact value can be derived analogously, then we store all belief states
possible at a node q ∈ Q instead of the expected belief in the forward pass.

The backward pass of NPGI is shown in Algorithm 2. We first consider time step
t = T − 1 . We loop over each agent i ∈ I , and over each local policy graph node qT−1

i
 . Since

after this step no subsequent actions will be taken, we find an optimal local action and
assign it to �+

i
(qT−1

i
) . An optimal local action is such that it maximizes the sum of the

expected immediate and final reward. For clarity, in the following we drop explicit nota-
tions of the time step from the notation of beliefs, policy graph nodes, actions, and obser-
vations. Recall that P(q−i ∣ qi,�) gives the pmf over the local policy graph nodes of agents
other than i. To simplify notation, we use the shorthand b−i for the expected joint belief at a
joint policy graph node q =

(
qi, q−i

)
 . Finally, we write a = (�+

1
(q1) , … , ai , … , �+

n
(qn)) as the

joint action where local actions of all other agents except i are fixed to those specified by
the current output function �+ . We solve

and assign �+
i
(qi) equal to the local action that maximizes Eq. (11).

Next, consider time step t ≤ T − 1 . There are now actions remaining after the current
one, so we consider both the current local action and which node to traverse to next via
the node transition function. We find an optimal local action and assign it to �+

i
(qt

i
) , and

find an optimal configuration for out edges of qt
i
 and assign values of �i(qti, zi) accordingly

for each zi ∈ Zi . As earlier, we shall drop all explicit notations of the time step for clarity.
We use the same notation for b−i and a as above. Additionally, for any joint observation
z = (z1,… , zn) ∈ Z , define

as the next joint policy node to transition to when the transitions of all other agents except i
are fixed to those specified by �+ , and agent i transitions to qzi

i
 . We solve

and assign �+
i
(qi) and �+

i
(qi, ⋅) to their respective maximizing values.

Line 13 of Algorithm 2 checks if there exists a node wt
i
 that we have already optimized

that has the same local policy as the current node qt
i
 . If such a node exists, we redirect all of

the in-edges of qt
i
 to wt

i
 to avoid having nodes with identical local policies. The redirection

may change the expected beliefs at the nodes at time steps t, t + 1,… , T − 1 . To ensure that
the expected joint beliefs and node reachability probabilities remain valid, we recompute
the forward pass (Line 16).

If we redirect the in-edges of qt
i
 to wt

i
 , on Line 15 we randomize the local policy of

the now useless node qt
i
 that has no in-edges, in the hopes that it may be improved on

(11)max
ai∈Ai

∑
q−i∈Q−i

P(q−i ∣ qi,�)

[
�T−1(b−i, a) +

∑
z∈Z

�(z ∣ b−i, a)VT (� (b−i, a, z))

]

f (z) =
(
�+
1
(q1, z1),… , q

zi
i
,… , �+

n
(qn, zn)

)

(12)

max
ai ∈ Ai

∀zi ∈ Zi ∶ q
zi
i
∈ Qi

∑
q−i∈Q−i

P(q−i ∣ qi,�)⋅

[
�t
(
b−i, a

)
+
∑
z∈Z

�(z ∣ b−i, a)V
�+

t+1

(
� (b−i, a, z), f (z)

)]
,

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 25 of 44 42

subsequent backward passes. To randomize the local policy of a node qt
i
∈ Qt

i
 , we sample

new local policies until we find one that is not identical to the local policy of any other
node in Qt

i
 . Likewise, when randomly initializing a new policy in our experiments we avoid

including in any Qt
i
 nodes with identical local policies.

In Algorithm 2 the loop at Line 7 may sometimes encounter a node qt
i
 that is unreach-

able. That is, there are no in-edges to qt
i
 , or the probability of every joint history ending at

qt
i
 is equal to zero. In such cases, we randomize the local policy at qt

i
 by calling the subrou-

tine RANDOMIZE on it.

6.3 Computational complexity

We next derive the computational complexity of one improvement iteration for NPGI
(Algorithm 1) when using the lower bound. We first consider the forward pass. The for-
ward pass requires computation of all joint belief states reachable over the horizon of T
decisions under the current joint policy � . For any history of past joint actions and observa-
tions, the joint policy � always specifies a single joint action to take. Therefore, the number
of possible joint belief states at each time step increases by a factor of |Z|. The number of
joint belief states evaluated in the forward pass is O(|Z|T).

The backward pass (Algorithm 2) iterates over all T time steps, and all of the n agents.
For each agent i, all its controller nodes Qi are iterated over. There are a total of m =

n∑
i=1

�Qi�
controller nodes. There are Tnm iterations, and in the worst case at each iteration the opti-
mization problem from Eq. (12) is solved.

To determine the complexity of solving Eq. (12), we determine the size of the feasible
set of the optimization problem. At any node qi , we may set the output function �i(qi) to
equal any of the |Ai| local actions. Likewise, the node transition function �i(qi, ⋅) for any of
the |Zi| possible local observations may be set to equal any of the O(|Qi|) possible succes-
sor nodes. To determine the worst case complexity, let |A∗| = max

i∈I
|Ai| , |Z∗| = max

i∈I
|Zi| , and

|Q∗| = max
i∈I

|Qi| . There are O(|A∗||Z∗||Q∗|) elements in the feasible set of Eq. (12).
To evaluate each feasible solution, a sum over the possible joint policy graph nodes q−i

of agents other than i is computed. Each of the other agents is in one of at most |Q∗| local
policy graph nodes. Thus, there are O(|Q∗|n−1) possible node configurations for the other
agents. Each sum term corresponds to a joint policy graph node (qi, q−i) and is equal to the
expected value of the node starting at its expected joint belief, weighted by the reachability
probability of the node. The policy is executed until the end of the problem horizon. By a
similar argument as made above for the forward pass, evaluating this value requires com-
putation of at most O(|Z|T) joint belief states and the corresponding rewards. The reacha-
bility probabilities P(q−i ∣ qi,�) are computed and cached already during the forward pass.

In summary, the computational complexity of one iteration in the while loop of Algo-
rithm 1 is

The time complexity of an improvement step in NPGI is exponential in the number of
agents n, the number of nodes |Q∗| in the largest local policy graph. The complexity is
exponential in the planning horizon T, unlike tree based Dec-POMDP approaches with
doubly-exponential complexity. The complexity is linear in the number of actions.

(13)O(|Z|T + Tnm|A∗||Z∗||Q∗||Q∗|n−1|Z|T).

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 26 of 44

6.4 Implementation details

We discuss how to initialize policies, and mention some techniques we use to escape
local maxima. The source code of our implementation of NPGI is available online at
https ://githu b.com/lauri mi/npgi.

Policy initialization. We initialize a random policy for each agent i ∈ I with a given
policy graph width |||Qt

i

||| for each t as follows. For example, for a problem with T = 3 and
|||Qt

i

||| = 2 , we create a policy similar to Fig. 2 for each agent, where there is one initial
node qi,0 , and 2 nodes at each time step t ≥ 1 . The action determined by the output func-
tion �i(qi) is sampled uniformly at random from Ai . For each node qt

i
∈ Qt

i
 for

0 ≤ t ≤ T − 1 , we sample a next node from Qt+1
i

 uniformly at random for each observa-
tion zi ∈ Zi and assign the node transition function �i(qi, zi) accordingly. At the last time
step, it is only meaningful to have |||QT

i

||| ≤ ||Ai
|| . In our experiments if |||QT

i

||| > ||Ai
|| , we

instead set |||QT
i

||| = ||Ai
||.

Escaping local maxima. NPGI repeats the forward and backward passes several times.
During our experiments we observed that sometimes NPGI gets stuck in a local maxima,
and is unable to find improved policy parameters that yield a higher value policy. To miti-
gate this, we follow the well known �-greedy approach [51] in reinforcement learning:
select the best action according to a specified probability, and, for exploration, select a sub-
optimal action otherwise. In practice, we added a randomization such that at each local
node qt

i
 , with probability 0.5, instead of optimizing the policy parameters as discussed

above we perform the following heuristic improvement step. First, we sample a single joint
history that ends in qt

i
 . We then solve the optimization problems of Eqs. (12) for the joint

belief that corresponds to the sample joint history. We empirically observed that this added
randomness helped NPGI to more effectively search the space of policies and to reach
higher quality solutions.

7 Non‑linear policy graph improvement for continuous‑state
problems

We describe how NPGI, introduced in the previous section, can be extended to Dec-POM-
DPs where the state space S is continuous. The main modifications we make are to repre-
sent belief states approximately as sets of weighted particles, and to apply particle filtering
(c.f. [44]) to replace the exact Bayes filter. This allows us to handle belief states without
assuming them to have any particular parametric representation such as a Gaussian dis-
tribution. We require that samples can be drawn from the initial belief, and from the state
transition model Ps and observation model Pz . Furthermore, we require that we can evalu-
ate probabilities Pz(zt+1 ∣ st+1, at).

7.1 Forward pass

Given a Dec-POMDP and a joint policy � = (Q, q0, � , �) , in the forward pass we track a
joint distribution P(st, qt ∣ �) over states and joint policy graph nodes. We first approximate
this distribution at t = 0 by a set of N ∈ ℕ weighted particles as

https://github.com/laurimi/npgi

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 27 of 44 42

where � is the Dirac delta function, and we sample each particle j = 1, 2,… ,N according
to

with initial weight w0,(j) = 1∕N.
Given the particle approximation at time t, we find the approximation at time (t + 1) by

the particle update process in Algorithm 3. We use this algorithm to calculate the sets of
particles for all time steps t = 1, 2,… , T . For each particle, we sample the next hidden state
and the observation, and set the next policy graph node accordingly. No weight updates are
required, as the effect of the observation probabilities are already included when drawing
samples from Pz . We therefore omit the weights from the algorithm description, but note
that they are still required for subsequent steps in the backward pass.

After running Algorithm 3 for all time steps, we have a particle approximation of
P(st, qt ∣ �) for all t = 0,… , T as a set of particles {st,(j), qt,(j),wt,(j)

q }N
j=1

 . For any time step t
and joint policy graph node q ∈ Qt , we obtain an approximation of P(st ∣ q,�) as follows.
Let Jq ⊆ {1, 2,… ,N} the subset of indices j of particles for which qt,(j) = q . Then the set

of particles where

are the normalized weights approximates P(st ∣ q,�) . The normalization term
∑
l∈Jq

wt,(l)
q

approximates P(q ∣ �) , the probability of reaching q under �.

7.2 Backward pass

The backward pass requires no modifications in terms of the main optimization prob-
lems, Eqs. (11) and (12) that are to be solved. However, the value of a policy has to be

P(s0, q0 ∣ �) ≈

N∑
j=1

w0,(j)�(s0 − s0,(j))�(q0 − q0,(j))

s0,(j) ∼ b0(s0), q0,(j) ∼ �(q0 − q0),

{st,(j), qt,(j),wt,(j)
q

|j ∈ Jq}

wt,(j)
q

=
wt,(j)

∑
l∈Jq

wt,(l)

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 28 of 44

calculated using the particle approximation of the belief. We estimate the expected sum
of rewards obtained when following � until the end of the horizon by using policy roll-
outs [8, 55].

When evaluating the value of a node qt
i
 in a policy � during the backward pass, we

approximate the objective function of Eqs. (11) and (12) by Algorithm 4. We loop
over all joint policy graph nodes qt where agent i is at local policy graph node qt

i
 . On

Lines 3-4 we first get the particle approximation of P(st ∣ qt,�) , the expected belief state
at qt , and an estimate of P(qt ∣ �) . We then average the return of K policy rollouts start-
ing from the expected belief to obtain an estimate v̂q of the expected sum of rewards
from qt until the end of the horizon. The value is weighted by the prior probability to
reach qt and added to the estimate of sum of rewards (Line 10).

In each rollout, we select actions according to the policy and sample a joint observa-
tion (Line 20). We then apply a particle filter to find the posterior belief at the next time
step (Line 21). Particle filtering approximates the optimal Bayes filter in cases where
computing the filtering equations exactly is infeasible, for example due to non-linear-
ity of the state transition or observation model, or because the joint belief state cannot
be represented exactly. In principle any particle filtering algorithm may be applied. We
describe in the following briefly the sequential importance resampling (SIR) particle fil-
ter we use in our experiments. More details on SIR and approximate Bayesian filtering
may be found, e.g., in [44].

We drop the subscript q and assume we have N particles – with weights normal-
ized to sum to one – that we wish to update using SIR. We are given a particle set
{sk,(j),wk,(j)}N

j=1
 and a joint action ak and joint observation zk+1 . First, SIR updates each

particle by drawing a sample from the state transition model according to

for every particle j. Second, the weights of all particles are updated according to

After updating weights, they are renormalized to sum to one. The weight updates tend to
have an effect of increasing the relative weights of state particles most likely to correspond
to the perceived joint observation. However, repeating the updates often leads to a situation
where almost all particles have zero or close to zero weights. Resampling is applied to

avoid this degenerate situation. If the effective number of particles 1∕
N∑
j=1

(wk+1,(j))2 falls

below N/10, the particles are resampled after the weight update. In resampling, the weights
wk+1,(j) are considered as probabilities in a discrete distribution on the particles. A set of N
samples are drawn from this discrete distribution, and the old particle set is replaced by the
sampled one. Weights are reset to all be equal to 1/N.

During the rollout, we approximate the per-step reward function �t by the procedure
EstimatEREwaRd. At the final time step, we approximate the final reward function �T
using the procedure EstimatEFinalREwaRd. These methods apply the current particle
approximation of the belief state to evaluate the per-step reward function, and their
details depend on the selected reward function. In Sect. 8.2, we describe a possible
implementation in a signal source seeking domain.

(14)sk+1,(j) ∼ Ps(sk+1 ∣ sk,(j), ak)

(15)wk+1,(j) ∝ wk,(j)Pz(zk+1 ∣ sk+1,(j), ak).

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 29 of 44 42

Besides the number of improvement iterations, in the continuous-state variant of
NPGI the trade-off between algorithm runtime and policy quality is affected by the
number of rollouts K. Algorithm 4 provides an unbiased estimate v̂ of the expected
sum of rewards, but the variance of the estimate depends on K. As described in [55],
with an estimate error tolerance of � and a confidence threshold of � , the required num-
ber of rollouts is

where vmax and vmin are the greatest and smallest possible expected sums of rewards, respec-
tively. Note that from the forward pass we obtain a particle approximation of the expected
belief state at a particular node. Therefore, in the backward pass we optimize local policies
to maximize the lower bound similarly as described in Sect. 6. The number of required
rollouts concerns approximation quality of the lower bound.

(16)K(�, �) =
(vmax − vmin)

2 ln
1

�

2�2
,

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 30 of 44

8 Experiments

We evaluate the performance of NPGI on information gathering Dec-POMDPs. We
discuss discrete domains in Sect. 8.1 and a continuous-state source seeking domain
in Sect. 8.2. In both subsections, we introduce the problem domains, the experimental
setup, and then present the results. The source code of our implementation of NPGI and
the experimental domains are available online at https ://githu b.com/lauri mi/npgi.

8.1 Discrete domains

We run experiments on the micro air vehicle (MAV) domain of [27] and propose an
information gathering rovers domain inspired by the Mars rovers domain of [2]. In
both tasks the objective of the agents is to maximize the expected sum of rewards col-
lected minus the entropy of the joint belief at the end of the problem horizon. We pro-
vide a brief summary of the domains in the following, and a complete description in the
“Appendix”.

MAV domain. A target moves between four possible locations, li in Fig. 5. The tar-
get is either friendly or hostile; a hostile target moves more aggressively. Two MAVs,
MAV1 and MAV2 in the figure, are tasked with tracking the target and inferring whether
it is friendly or hostile. The MAVs can choose to use either a camera or a radar sensor
to sense the location of the target. An observation from either sensor corresponds to a
noisy measurement of the target’s location. The camera is more accurate if the target is
close, whereas the radar is more accurate when the target is farther away. The Manhat-
tan distance is applied, i.e., at l0 the target is at distance 0 from MAV1 and at distance 3
from MAV2. If both MAVs apply their radars simultaneously, accuracy decreases due to
interference.

Using the camera has zero cost, and using the radar sensor has a cost of 0.1, and an
additional cost of 1 or 0.1 if the target is at distance 0 or 1 to the MAV, respectively, to
model the risk of revealing the MAVs own location to the (potentially hostile) target. To
model information gathering, we set the final reward equal to the negative Shannon
entropy of the joint belief, i.e., �T (b) =

∑
s∈S

b(s) log2 b(s) . The initial belief is uniform

over all states. This problem has 8 states; 4 target locations and a binary variable for
friendly/hostile, and 2 actions and 4 observations per agent.

Information gathering rovers. Two rovers are collecting information on four sites li
of interest arranged as shown in Fig. 5. Each site is in one of two possible states which
remains fixed throughout. The agents can move north, south, east, or west. Movement
fails with probability 0.2, in which case the agent remains at its current location. The
agents always fully observe their own location. Additionally, the agents can choose to
conduct measurements of the site they are currently at. A binary measurement of the
site status is recorded with false positive and false negative probabilities of 0.2 each.
If the agents measure at the same location at the same time, the false positive and false
negative probabilities are significantly lower, 0.05 and 0.01, respectively. Movement has

Fig. 5 Arrangement of locations
in the MAV domain (left) and
rovers domain (right) l0 l1 l2 l3MAV1 MAV2

l0 l2

l1 l3

https://github.com/laurimi/npgi

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 31 of 44 42

zero cost, while measurement has a cost of 0.1. The final reward is equal to the nega-
tive entropy. The initial belief is such that one agent starts at l0 , the other at l3 , with a
uniform belief over the site status. The problem has 256 states, and 5 local actions and 8
local observations per agent.

8.1.1 Experimental setup

We compare NPGI to one exact algorithm and two heuristic algorithms. The exact method
we employ is the Generalized Multi-Agent A* with incremental clustering and expan-
sion, or GMAA*-ICE [38], with the QPOMDP search heuristic. According to [38] a vec-
tor representation of the search heuristic, analogous to the representation of an optimal
POMDP value function by a set of so-called �-vectors [48], can help scale up GMAA*-
ICE to larger problems. However, since the vector representation only exists if the reward
function is linear in the joint belief, we represent the search heuristic as a tree. The two
heuristic methods are joint equilibrium based search for policies, JESP [33], and direct
cross-entropy policy search, DICEPS [40].

All of the methods above are easily modified to our domains where the final reward
is equal to the negative Shannon entropy. However, applicability of NPGI is wider as it
allows the reward at any time step to be a convex function of the joint belief. There are
also other algorithms such as FB-HSVI [14] and PBVI-BB [29] that have demonstrated
good performance on many benchmarks. However, these algorithms rely on linearity of the
reward to achieve compression of histories and joint beliefs, and non-trivial modifications
beyond the scope of this work would be required to extend them to Dec-POMDPs with
non-linear rewards.

As baselines, we report values of a greedy open loop policy that executes a sequence of
joint actions that has the maximal expected sum of rewards under the initial belief, and the
best blind policy that always executes the same joint action.

We run NPGI using both the exact value of nodes and the lower bound from Corol-
lary 1. The number of policy graph nodes |||Qt

i

||| at each time step t is 2, 3, or 4. For each run
with NPGI we run 30 backward passes, starting from randomly sampled initial policies.
For all methods, we report the averages over 100 runs. If a run does not finish in 2 hours,
we terminate it.

8.1.2 Results

Tables 1 and 2 show the average policy values in the MAV and information gathering rov-
ers problems, respectively. NPGI is indicated by “Ours” when the lower bound (LB) was
used, and as “Ours (No LB)” when exact evaluation of node values was applied. Results
are reported as function of the problem horizon T, and for NPGI also as function of the
policy graph size |||Qt

i

||| . Where applicable, the standard error obtained as the ratio of the
sample standard deviation and the square root of the number of samples is reported. The
symbol “-” indicates missing results due to exceeding the cut-off time.

GMAA*-ICE finds an optimal solution, but similarly to [27] we find that it does not
scale beyond T = 3 in either problem. Considering T = 2 and T = 3 , the average values of
our method are very close to the optimal value in both problems. In these cases, we found
that NPGI finds an optimal policy in about 60% of the runs.

In the MAV problem (Table 1), performance of our method is consistent for varying
policy graph size |||Qt

i

||| and horizon T. This indicates that even a small policy suffices to

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 32 of 44

reach a high value in this problem. We also see that applying the lower bound does not
reduce the quality of the policy found by our approach. In the rover problem (Table 2), a
compact policy with as few as 2 nodes per time step in the policy graph can lead to a high
value. The situation is potentially different in domains with many more actions and obser-
vations. Given a fixed policy graph size, in such large domains there are more possible
joint belief states per policy graph node than in domains with few actions and observations.
As it is possible that every joint belief state requires a different action as a response to
reach a high expected sum of rewards, the likelihood to discover suboptimal policies is
increased in large domains. The number of joint belief states per policy graph node also
affects the quality of the lower bound (Corollary 1). Informally speaking, the greater the
number of possible joint belief states, the greater the chance that the bound is lower than
the exact value.

Table 1 Average policy values in the MAV domain (|S| = 8 , ||Ai
|| = 2 , ||Zi|| = 4)

Best values for each planning horizon are bolded. Numbers in parentheses indicate standard error where
applicable

Method |||Qt

i

||| T = 2 T = 3 T = 4 T = 5

Ours 2 − 1.931 (2 × 10−3) − 1.833 (3 × 10−4) − 1.768 (6 × 10−5) − 1.725 (1 × 10−4)
3 − 1.931 (2 × 10−3) − 1.833 (3 × 10−4) − 1.768 (6 × 10−5) − 1.724 (5 × 10−6)
4 − 1.931 (2 × 10−3) − 1.832 (3 × 10−4) − 1.768 (2 × 10−5) − 1.724 (5 × 10−6)

Ours (No LB) 2 − 1.930 (2 × 10−3) − 1.832 (2 × 10−3) − 1.768 (8 × 10−5) − 1.725 (7 × 10−5)
3 − 1.930 (2 × 10−3) − 1.833 (3 × 10−3) − 1.768 (5 × 10−5) − 1.724 (5 × 10−6)
4 − 1.930 (2 × 10−3) − 1.832 (2 × 10−3) − 1.768 (2 × 10−5) − 1.724 (6 × 10−6)

DICEPS − 1.925 (1 × 10−3) − 1.937 (3 × 10−3) − 1.926 (1 × 10−3) -1.940 (2 × 10−3)
JESP − 1.953 (2 × 10−3) − 1.859 (2 × 10−3) − 1.794 (4 × 10−4) − 1.750 (4 × 10−4)
GMAA*-ICE − 1.919 − 1.831 – –
Greedy − 2.156 − 2.044 − 1.978 − 1.932
Blind − 1.945 − 1.904 − 1.909 − 1.932

Table 2 Average policy values in the information gathering rovers domain (|S| = 256 , ||Ai
|| = 5 , ||Zi|| = 8)

Best values for each planning horizon are bolded. Numbers in parentheses indicate standard error where
applicable

Method |||Qt

i

||| T = 2 T = 3 T = 4 T = 5

Ours 2 − 3.495 (3 × 10−3) − 3.192 (2 × 10−3) − 3.036 (2 × 10−3) − 2.981 (2 × 10−3)
3 − 3.495 (3 × 10−3) − 3.190 (1 × 10−3) − 3.034 (0) − 2.975 (1 × 10−3)
4 − 3.506 (4 × 10−3) − 3.192 (2 × 10−3) − 3.037 (2 × 10−3) − 3.041 (8 × 10−3)

Ours (No LB) 2 − 3.495 (3 × 10−3) − 3.190 (1 × 10−3) − 3.034 (0) − 3.010 (6 × 10−3)
3 − 3.496 (3 × 10−3) − 3.190 (1 × 10−3) − 3.034 (0) –
4 − 3.506 (4 × 10−3) − 3.190 (1 × 10−3) − 3.106 (1 × 10−2) –

DICEPS − 3.482 (1 × 10−3) − 3.535 (1 × 10−2) − 3.825 (2 × 10−2) − 4.792 (3 × 10−2)
JESP − 3.483 (1 × 10−3) − 3.536 (6 × 10−3) – –
GMAA*-ICE − 3.479 − 3.189 – –
Greedy − 3.844 − 4.031 − 3.877 − 3.818
Blind − 3.479 − 3.412 − 3.418 − 3.472

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 33 of 44 42

A higher standard error indicates more variation in the results, and is applicable for
stochastic methods such as NPGI, DICEPS, and JESP. From Tables 1 and 2 we find
all of the methods perform consistently, with a low standard error. Notably, for policy
graph size parameter |Qt

i
| equal to 2 or 3 with T = 4 , NPGI without lower bound always

converges to a policy with the same value. In the rovers domain (Table 2) we observe
the standard error to increase for T = 5 . As fewer improvement iterations can be com-
pleted within the cut-off time of 2 hours, the effect of the randomly initialized starting
policy is still seen.

Table 3 shows the average duration of one backward pass of Algorithm 1 as function of
the problem horizon T with |||Qt

i

||| = 2 , with or without using the lower bound (LB). The
lower runtime requirement when applying the lower bound is seen clearly for T ≥ 4 . The
runtime of NPGI is dominated by the backward pass and solving the local policy optimiza-
tion problems, Eqs. (11) and (12), which applying the lower bound help reduce. As indi-
cated by the results in Tables 1 and 2, applying the lower bound also does not degrade the
quality of the policies found. However, as noted above, the lower bound is also potentially
looser in domains with a greater number of actions and observations.

Our method outperforms the greedy and blind baselines except for T = 2 in the rover
problem where a blind policy of always measuring is optimal. In several cases, JESP and
DICEPS return policies with a value lower than one or both of the baselines.

The size of the policy graph in NPGI must be specified before calculating the policy.
As shown by our experiments, fixing the policy graph size effectively limits the space of
policies to be explored and can produce compact and understandable policies. However,
a potential weakness is that optimizing over fixed-size policies excludes the possibility to
find a larger but potentially better policy.

Execution of NPGI may be terminated after any number of improvement steps and the
best joint policy found so far will be returned. This allows the user to control the trade-off
between the quality of the returned policy and the runtime of the algorithm. To investigate
this trade-off and its dependence on the policy graph size and whether the lower bound is
applied or not, we recorded the value of the best joint policy after each improvement itera-
tion in each of the 100 runs. In Fig. 6, we report the average, greatest, and smallest values
of the best joint policies for the MAV domain with planning horizon T = 5 . We display
results only for the first 30 improvement steps, as there were no significant changes over
the remaining 20 improvement steps.

When the lower bound is not applied, i.e., the value function is evaluated exactly, on
average NPGI improves the value of the joint policy slightly faster. This is seen by compar-
ing the solid lines in the left and right hand plots of Fig. 6 during the initial 10 improve-
ment steps. However, after a sufficient number of improvement steps (in this case more
than 20), NPGI with the lower bound also tends to achieve joint policies of equal quality,
as also shown in Table 1.

Table 3 Average NPGI backward
pass duration (in seconds) with
or without lower bound (LB)

MAV Rovers

T With LB No LB With LB No LB

2 0.002 0.002 0.04 0.04
3 0.04 0.05 0.26 0.34
4 1.20 2.74 1.43 4.40
5 31.02 55.34 32.23 158.7

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 34 of 44

Figure 6 indicates that the average value of the best joint policy over all repetitions con-
verges towards the overall best value policy found among all repetitions (indicated by the
upper dotted line). In most cases NPGI is able to find good quality policies given suffi-
cient improvement steps. However, the worst cases indicated by the lower dotted lines are
indicative of a weakness of NPGI, namely that it is still possible that a poor initialization
leads NPGI to get stuck at a poor local maximum. This issue is more severe the smaller
the policy graph: with a poorly initialized and small policy graph, there are few oppor-
tunities to improve the policy. This can be seen by comparing the lower dotted lines in
Fig. 6 that show the smallest value of the best joint policy found over all the 100 repetitions
of the experiment. When using the lower bound with size parameter |Qt

i
| = 2 , the joint

policy cannot be improved above the value of -1.74 in some repetitions. As is also seen
from Fig. 6, worst-case performance is improved when exact value computation is used
instead of the lower bound, and tends to also be better when larger policy graph sizes are
considered.

We examined the results also for other planning horizons in the MAV domain. For plan-
ning horizons T = 2 and 3, the average, greatest, and smallest values were similar regard-
less of whether the lower bound was used or not. As discussed in Sect. 6, the lower bound
is tighter the less histories map to each policy graph node. With shorter planning horizons,
there are less histories possible at a particular policy graph node, which explains why the
results are similar for both NPGI and NPGI without the lower bound. For planning horizon
T = 4 , the results not using the lower bound resulted in improvements of the average value
over fewer improvement steps, similarly as in Fig. 6. However, the difference in the average
values again decreases when more improvement steps are completed.

We also examined the results in the information gathering rovers as a function of the
number of improvement steps, and observed similar trends as in the MAV domain. Aver-
age joint policy value over all repetitions for NPGI both with or without using the lower

0 10 20 30

Number of improvement steps

−1.78

−1.77

−1.76

−1.75

−1.74

−1.73

−1.72

Jo
in

tp
ol

ic
y

va
lu

e

NPGI, with lower bound

MAV domain, T=5
|Qt

i |=2, average

min / max
|Qt

i |=3, average

min / max
|Qt

i |=4, average

min / max

0 10 20 30

Number of improvement steps

NPGI, no lower bound

MAV domain, T=5
|Qt

i |=2, average

min / max
|Qt

i |=3, average

min / max
|Qt

i |=4, average

min / max

Fig. 6 Joint policy value in the MAV domain with planning horizon T = 5 as a function of the number of
improvement steps for NPGI with the lower bound (left) and without the lower bound (right). Solid lines
indicate the average value of all best policies over the 100 repetitions. The dotted lines indicate the greatest
and smallest values of the best policies found over all repetitions. Note that the maxima are identical such
that only the cyan dotted line is visible. The color of the lines indicates the size parameter |Qt

i
| of the policy

graphs. NPGI may be terminated after any number of improvement steps

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 35 of 44 42

bound converges towards the maximum joint policy value among all repetitions. Conver-
gence tends to require fewer iterations when not using the lower bound. In the case T = 5
the comparison could not be done, since without using the lower bound only at most 4
improvement steps could be completed within the cutoff time for |Qt

i
| = 2 , and none for the

larger policy graph sizes.

8.2 Continuous‑state source seeking

We consider a signal source seeking problem where two agents infer the location of a
signal source based on noisy data. The agents can move around the area and observe the
received signal strength (RSS) from the source. RSS tends to be lower the farther away the
source is from the receiving agent. We use NPGI to design local policies for the agents
with the objective of minimizing the uncertainty of the source location estimate.

There is a stationary signal source at some unknown location ls in the two dimen-
sional space L = [−20, 20] × [−20, 20] . The two agents can move between a finite subset
L = {l0, l1,… , l8} ⊂ L of locations along the edges of an undirected graph, as illustrated in
Fig. 7. The possible local actions of each agent are to either deterministically move to any
location adjacent to their current location, or stay where they are.

After moving to location l, the agent records the RSS from the source. We model RSS
similarly as [5] by

where Ptx = 18 dBm is the power transmitted by the source, Gtx = 1.5 dBi is the transmitter
antenna gain, Ltx = 0 dB is the transmitter loss, Grx = 1.5 dBi is the receiver antenna gain,
Lrx = 0 dB is the receiver loss, Lfs is the free space loss, and R is the noise due to signal
fading. The free space loss in dB is

(17)RSS(l, ls) = Ptx + Gtx − Ltx + Grx − Lrx − Lfs(l, ls) − R,

(18)Lfs(l, ls) = −27.55 + 20 log10(�) + 20 log10(d(l, ls)),

Fig. 7 A signal source is located
in the 40-by-40 meter region
depicted. Two agents can move
between the nodes along the
edges of the undirected graph.
The number i inside each node
indicates the location li it corre-
sponds to. The closer an agent is
to the signal source, the stronger
the received signal strength
(RSS) it records tends to be. The
agents infer the source location
based on their RSS observations

−20 −10 0 10 20
−20

−10

0

10

20

0 1

23

4

5

6

7

8

x [meters]

y
[m

et
er
s]

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 36 of 44

where � = 2.4 GHz is the transmitted frequency, and d(l, ls) is the Euclidean distance
between the source and receiver. We assume Rician fading, which fits scenarios where one
signal path is dominant over the others. We set R ∼ Rice(�, �) with � = 20 dB, � = 4 dB.
The distribution of the received signal strength with fading as a function of distance from
the source is illustrated in Fig. 8.

For planning, we discretize the perceived RSS into three discrete observations: high
(RSS ≥ −110 dBm), medium (-110 dBm > RSS ≥ -125 dBm), and low (RSS < -125 dBm).
The probabilities of the respective discretized observations as a function of distance from
the source are illustrated in Fig. 8.

We implement the procedure EstimatEFinalREwaRd from Algorithm 4 by first
evaluating the weighted sample covariance, and then computing its log determinant.
Denote the final set of weighted particles as {wT ,(j), sT ,(j)}N

j=1
 , where each state particle

sT ,(j) = (l
T ,(j)

1
, l
T ,(j)

2
, l
T ,(j)
s) is a tuple consisting of the locations lT ,(j)

1
, l
T ,(j)

2
∈ L of the two agents

and the source location lT ,(j)s ∈ L ⊂ ℝ
2 . We first compute the weighted average source

location

The 2-by-2 weighted sample covariance matrix �T is then obtained by

where (⋅)� denotes transpose. The procedure finally returns − log det�T , the log determi-
nant of the weighted sample covariance matrix of the state particles.

This choice of reward function is suitable since the weighted covariance of the particles
is smaller the more tightly the particles are clustered together. Unimodal density estimates

(19)l̂T
s
=

N∑
j=1

wT ,(j)lT ,(j)
s

.

(20)
𝛴T =

1

1 −
N∑
j=1

(wT ,(j))2

N�
j=1

wT ,(j)(lT ,(j)
s

− l̂T
s
)(lT ,(j)

s
− l̂T

s
)�,

−150

−100

−50

R
SS

[d
B

m
] Mean

95% limits

0 5 10 15 20 25 30 35 40

Distance from source [meters]

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ili

ty

RSS ≥ -110 dBm -110 dBm to -125 dBm RSS < -125 dBm

Fig. 8 The observation model with Rician fading in the source seeking task. Above: The mean of received
signal strength (RSS) and its 95% limits under Rician fading as a function of distance. Below: the probabili-
ties of the three discretized observations as a function of distance

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 37 of 44 42

where covariance is small are also preferred over multimodal estimates where the overall
covariance is larger even if the modes themselves are strongly concentrated. This makes
the reward function suitable for tasks where a single location estimate should be produced.
A technical justification for the reward function choice is that the differential entropy (a
measure of uncertainty for continuous random variables) of a multivariate Gaussian dis-
tribution is proportional to the log determinant of the covariance matrix of the Gaussian.

Since all other rewards in the source seeking problem are equal to zero, the procedure
EstimatEREwaRd from Algorithm 4 simply always returns zero. We briefly outline how
other, more complicated reward functions could be implemented in EstimatEREwaRd. Non-
linear rewards �t ∶ �(S) × A → ℝ could be estimated by applying a similar strategy as for
the procedure EstimatEFinalREwaRd above, by implementing a suitable function that maps
a joint action and a belief state represented as set of weighted particles to a real-valued
reward. Given a weighted set of particles {wt,(j), st,(j)}N

j=1
 and a joint action at , a standard

state and action based reward could easily be implemented by returning the weighted sum
N∑
j=1

wt,(j)R(st,(j), at) , where R is an appropriate state-based reward function.

For numerical stability, we clamped the maximum value returned by EstimatEFinal-
REwaRd to 50.0. The smallest and greatest possible sum of rewards in any rollout by Algo-
rithm 4 are vmin = 0.0 and vmax = 50.0 , respectively.

8.2.1 Experimental setup

We apply the NPGI variant for continuous-state problems with particle filtering to find a
joint policy for the agents in the source seeking problem. We investigate planning hori-
zons T = 3, 4,… , 7 with randomly initialized policy graphs of width |Qt

i
| = 2 or 3. We use

10000 particles to represent P(st, qt ∣ �) . During the backward pass, we apply K = 100 roll-
outs to evaluate the policy values. Assuming a confidence threshold � = 0.05 , and given
the smallest and greatest possible sums of rewards vmin = 0.0 and vmax = 50.0 returned in
any rollout this value corresponds to an error tolerance of � ≈ 6 according to Eq. (16). We
experimented with 10 rollouts, giving an error tolerance of approximately 20 which we
found to make the algorithm unstable, with a large number of changes in the local policies
due to the high variance of rollout value estimates. On the other hand, experiments with
1000 rollouts with corresponding error tolerance of approximately 1.9 did not significantly
improve the outcomes while increasing the runtime. We run 50 improvement steps (for-
ward and backward passes) in each case. A cut-off time of 2 hours is applied for policy
graph width 2, and 6 hours for policy graph width 3. We repeat the NPGI policy computa-
tion 100 times using different random seeds.

We compare NPGI to two baselines: a random policy where each agent chooses a valid
action uniformly at random, and a hand-designed patrolling policy. The patrolling policy
is designed such that the agents cover the maximum amount of locations in the graph (see
Fig. 7). In the patrolling policy, agent 1 follows the path (l1, l2, l6, l5, l8, l7, l2) , and agent 2
follows the path (l0, l3, l4, l7, l8, l5, l1).

We run 1000 simulations on each policy. The initial belief of the signal source location
is uniform over L , and we sample the true location of the signal source uniformly at ran-
dom. Both agents start at l0 . We record the average error in the final estimate of the source
location. For state estimation during the simulations, we use a particle filter on the continu-
ous observed RSS values.

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 38 of 44

8.2.2 Results

The average source localization error for the random, patrolling, and policies found by
NPGI are shown in Fig. 9. For each planning horizon T, we report the final average error
obtained by simulating the corresponding policy for T steps. For NPGI, we report only
the result with policy graph width of |Qt

i
| = 2 , as we found the average to not differ sig-

nificantly from |Qt
i
| = 3 . The standard error for all policies is very small, in the order of

10−2 meters, and is not visible in Fig. 9.
As expected, the policy of randomly selecting locations from which to observe the

RSS performs worst. For T = 3 , the patrolling policy that attempts to visit as many
locations as possible and our NPGI policies perform almost equally well. However, for
T ≥ 4 , NPGI policies that decide the next location based on the history of RSS meas-
urements are able to reach a lower average error than the patrolling policy. The perfor-
mance difference between patrolling policy and NPGI diminishes for T = 7 . When all
locations li have been visited, it is likely that the agents have perceived a high RSS in at
least one of them which allows accurate estimation of the source location.

3 4 5 6 7

Planning horizon T

13

14

15

16

17

18

19

A
vg

. l
oc

al
iz

at
io

n
er

ro
r

[m
et

er
s]

NPGI

Random

Patrol

Fig. 9 Average error of the source location estimate (lower is better) as a function of the planning horizon
T. Our NPGI planning approach outperforms random and patrolling policies

3

2

3

3

2

3

3

3

4

3

2

low

high, mid

*

low

mid, high

low

mid

high

mid

high

low

high

low, midmid

low,high

*

1

0

1

3

1

0

0

0

1

0

3

1

mid

low,high

high

low

mid

low,mid

high

*

mid

low,high

mid

low,high

mid

low,high

low

mid,high

mid,high

low

Fig. 10 An example of policies found by NPGI. Left: local policy for agent 1. Right: local policy for agent
2. Nodes are labeled by the movement action to be taken. The edge labels indicate the discretized observa-
tion conditional on which the edge is traversed. An asterisk (*) indicates unconditional traversal of the edge.
Unreachable nodes are not drawn

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 39 of 44 42

Figure 10 shows an example of one of the policies found by NPGI for T = 5 with policy
graph width |Qt

i
| = 3 . This policy reached an average localization error of 15.1 meters. The

policy of agent 1 is shown on the left side of the figure, and it indicates the agent mostly
stays in the bottom half of the environment around nodes 2, 3, and 4 (see Fig. 7). The pol-
icy of agent 2, shown on the right of Fig. 10, indicates it in turn remains in the upper half
of the environment, mainly at nodes 0 and 1, sometimes 3.

The compact policies produced by NPGI are easily interpretable and understandable.
We see that the two agents cooperate by concentrating their search efforts on the bottom
and top halves of the environment (Fig. 7), respectively. Interestingly, the second to last
action for agent 1 is always to move to location 3. However, conditional on how the agent
arrives there (through which path in the policy graph), and what its final observation is,
the agent’s final location may be either one of 2, 3, or 4. Another observation we can make
is that both agents avoid the center of the environment, never moving to location 8. RSS
measurements recorded at the other surrounding nodes (0,1,2,3) suffice to estimate the
source location.

We have demonstrated that NPGI can be applied to continuous-state domains, and that
it can outperform random and simple heuristic policies. One further advantage that plan-
ning methods such as NPGI have but we do not investigate here in detail is that plans can
be generated for particular initial information simply by re-executing the planner. In con-
trast, heuristic policies potentially require redesign by hand for each new initial information
state.

9 Conclusion and future work

We showed that if the reward function in a finite-horizon Dec-POMDP is convex in the
joint belief, then the value function of any policy is convex in the joint belief. Rewards
that are convex in the joint belief are important in information gathering problems. We
applied the result to derive a lower bound for the value, and empirically demonstrated that
it improves the run-time of a heuristic anytime planning algorithm without degrading solu-
tion quality. We empirically showed that our algorithm outperforms existing heuristic solv-
ers that are applicable to convex reward Dec-POMDPs. Furthermore, we derived an exten-
sion of our algorithm to continuous-state information gathering Dec-POMDPs with finite
action and observation spaces and demonstrated its performance in a cooperative source
seeking problem.

The work we presented here offers a principled formulation of model based multi-agent
active information gathering, viewing it as a Dec-POMDP with an information-theoretic
reward function. There are several potential directions of future research into decentralized
information gathering problems.

We considered reward functions that are convex in the joint belief, since they are well-
justified for information-gathering problems. However, NPGI with exact value function
evaluation is applicable with rewards that depend on the joint belief in an arbitrary way.
Investigation of other types of reward functions is a potential future direction.

Single-agent POMDPs with piecewise linear and convex (PWLC) reward functions can
be shown to be equivalent to POMDPs with linear rewards through an augmentation of the
action space with prediction actions [45]. Whether such an equivalence can be established
for multi-agent Dec-�POMDPs we studied in this article remains an open question. As a
convex function can be arbitrarily well approximated by a PWLC function, finding such

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 40 of 44

an equivalence can potentially lead to an approximation algorithm for Dec-�POMDPs with
bounded suboptimality.

The heuristic anytime algorithm we present offers no guarantees on the performance
of policies found. We empirically found the performance to be close to optimal in the
discrete domains we examined and outperforming all baselines in the continuous-state
domain. It remains to be investigated whether these findings translate to domains with a
greater number of actions and observations as well. Up to date, state-of-the-art solvers for
Dec-POMDPs with linear rewards (e.g., [14, 29]) can address problems larger than the
Dec-�POMDPs with non-linear rewards we addressed here. Scaling up to larger problems
remains an open challenge for Dec-�POMDPs.

Acknowledgements Open Access funding provided by Projekt DEAL. Jan Peters was supported by Euro-
pean Research Council under Grant No. 640554 (SKILLS4ROBOTS) and Joni Pajarinen by German
Research Foundation project PA 3179/1-1 (ROBOLEAP)

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

Full description of the discrete experimental domains

In this appendix, we provide a full description of the two discrete experimental domains.

Micro air vehicle

In the micro air vehicle (MAV) domain there are two agents such that I = {1, 2} . A state
is a pair (l, f) consisting of the location l and the type f of the target. The location takes a
value in L = {l0, l1, l2, l3} where the arrangement of locations is illustrated in Fig. 5 (left).
The type takes a value in F = {friendly, hostile} . The state space is S = L × F . Agent 1 is
located at l0 , and agent 2 is located at l4 (see Fig. 5 left). Each agent has local action space
Ai = {camera, radar} and local observation space Zi = {z0, z1, z2, z3} , where each zk corre-
sponds to a Manhattan distance of k from the agent.

The type of the target remains fixed throughout the task. Target motion is stochastic. If
the target is friendly (hostile), it will stay at its current location with probability 0.85 (0.6).
Otherwise, it will move to an adjacent location uniformly at random.

Reliability of measurements depends on the distance between each agent and the target.
Furthermore, reliability is degraded due to interference if both agents operate their radar
concurrently. As hostile targets are actively avoiding detection, measuring their location is
less reliable. If an agent applies its camera, the measurement model is described by the two
matrices

http://creativecommons.org/licenses/by/4.0/

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 41 of 44 42

where Oc,f concerns the case where the target is friendly, and Oc,h the case where the target
is hostile. From top to bottom, each row of the matrix corresponds to the measurements
z1, z2, z3 , and z4 . From left to right, each column of the matrix corresponds to the true Man-
hattan distance between the agent and the target. Each matrix element prescribes the condi-
tional probability of perceiving the corresponding local observation given the true distance
to the target.

In case only one of the agents uses its radar, detection reliability is improved. The measure-
ment model is described by the two matrices

interpreted similarly as above. If both agents concurrently apply their radar, measurement
quality degrades due to inference and both agents’ measurement model is described by the
matrices

interpreted as above.
On time steps t < T , a standard state-dependent reward of the form R(s, a) is used. For each

agent that applies its radar a reward of −0.1 is obtained, but otherwise rewards are zero for all
state and action pairs. At step t = T , the reward is set equal to the negative Shannon entropy of
the joint belief state. The initial state distribution is uniform over all states.

Information gathering rovers

In the information gathering rovers domain there are two agents such that I = {1, 2} . A state
is a tuple (s1, s2,m1,m2,m3,m4) , where si denotes the location of agent i and mk denotes
the state of location k. The location si assumes values in L = {l0, l1, l2, l3} , where the loca-
tions are arranged as shown in Fig. 5 (right). The state of each location is a binary variable
mk ∈ {0, 1} . In total, the state space is S = L × L × {0, 1}4 . The action space of both agents
is Ai = {north, south, east, west, measure} . Each agent records an observation that is a pair
(l̂, m̂) of a measured location l̂ and a measured state m̂ of the current location. The possible
observations of both agents are Zi = L × {0, 1}.

The state of each location remains fixed throughout the task. The movement actions may
change the agents’ locations. If an illegal movement action is chosen (e.g., attempting to move
south at location l1), the agent’s location remains unchanged. Otherwise, the movement suc-
ceeds with probability 0.8, and with probability 0.2 the agent remains at its current location.

(21)

Oc,f =

⎡
⎢⎢⎢⎣

0.9961 0.2547 0.2173 0.2426

0.0039 0.4419 0.2561 0.2493

0.0000 0.2547 0.2705 0.2534

0.0000 0.0487 0.2561 0.2547

⎤
⎥⎥⎥⎦
, Oc,h =

⎡
⎢⎢⎢⎣

0.6945 0.2616 0.2396 0.2468

0.2855 0.2957 0.2520 0.2497

0.0198 0.2616 0.2564 0.2515

0.0002 0.1811 0.2520 0.2520

⎤
⎥⎥⎥⎦

(22)

Or,f =

⎡⎢⎢⎢⎣

1.0000 0.0404 0.0224 0.0703

0.0000 0.9192 0.2336 0.1867

0.0000 0.0404 0.5104 0.3354

0.0000 0.0000 0.2336 0.4076

⎤⎥⎥⎥⎦
, Or,h =

⎡⎢⎢⎢⎣

0.9220 0.2493 0.1658 0.2004

0.0780 0.4623 0.2634 0.2431

0.0000 0.2493 0.3074 0.2729

0.0000 0.0391 0.2634 0.2836

⎤⎥⎥⎥⎦

(23)

Or̂,f =

⎡⎢⎢⎢⎣

0.5705 0.2662 0.1799 0.1733

0.3460 0.3418 0.2618 0.2369

0.0772 0.2662 0.2965 0.2857

0.0063 0.1258 0.2618 0.3041

⎤⎥⎥⎥⎦
Or̂,h =

⎡⎢⎢⎢⎣

0.5000 0.2625 0.2173 0.2212

0.3533 0.3013 0.2561 0.2466

0.1247 0.2626 0.2705 0.2632

0.0220 0.1736 0.2561 0.2690

⎤⎥⎥⎥⎦

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 42 of 44

Regardless of the action taken by an agent, it will always correctly observe its own current
location. The second part of the measurement, the state of the current location, is subject to
uncertainty. If an agent takes a movement action, it will observe the state as either 0 or 1 uni-
formly at random. If one agent i alone takes a measurement action at a location lk , the meas-
urement probability is conditional on the state mk according to

and palone(m̂ = 1 ∣ mk) = 1 − palone(m̂ = 0 ∣ mk) . In case both agents are at the same loca-
tion lk and select the measurement action, the measurement reliability of both agents is
improved, and governed by

and ptogether(m̂i = 1 ∣ mk) = 1 − ptogether(m̂i = 0 ∣ mk).
On time steps t < T , a state-dependent reward R(s, a) is used. For each agent that takes

a measurement action a reward of −0.1 is obtained, otherwise rewards are zero. At step
t = T , the reward is set equal to the negative Shannon entropy of the joint belief state. The
initial state distribution is such that agent 1 starts at location l0 and agent 2 at location l3 ,
and the belief over location states mk is uniform.

References

 1. Allen, M., & Zilberstein, S. (2009). Complexity of decentralized control: Special cases. In Advances in
neural information processing systems (pp. 19–27).

 2. Amato, C., & Zilberstein, S. (2009). Achieving goals in decentralized POMDPs. In Autonomous agents
and multiagent systems (AAMAS) (pp. 593–600).

 3. Araya-López, M., Buffet, O., Thomas, V., & Charpillet, F. (2010). A POMDP extension with belief-
dependent rewards. In Advances in neural information processing systems (pp. 64–72).

 4. Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2015). Decentralized active information acqui-
sition: Theory and application to multi-robot SLAM. In IEEE International conference on robotics and
automation (ICRA) (pp. 4775–4782).

 5. Atanasov, N. A., Le Ny, J., & Pappas, G. J. (2015). Distributed algorithms for stochastic source seek-
ing with mobile robot networks. Journal of Dynamic Systems, Measurement, and Control, 137(3),
031004.

 6. Bajcsy, R., Aloimonos, Y., & Tsotsos, J. K. (2018). Revisiting active perception. Autonomous Robots,
42(2), 177–196.

 7. Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decentralized
control of Markov decision processes. Mathematics of Operations Research, 27(4), 819–840.

 8. Besse, C., & Chaib-draa, B. (2008). Parallel rollout for online solution of Dec-POMDPs. In 21st inter-
national florida artificial intelligence research society conference (FLAIRS) (pp. 619–624).

 9. Best, G., Cliff, O. M., Patten, T., Mettu, R. R., & Fitch, R. (2019). Dec-MCTS: Decentralized planning
for multi-robot active perception. The International Journal of Robotics Research, 38(2–3), 316–337.

 10. Calinescu, G., Chekuri, C., Pal, M., & Vondrák, J. (2011). Maximizing a monotone submodular func-
tion subject to a matroid constraint. SIAM Journal on Computing, 40(6), 1740–1766.

 11. Capitan, J., Spaan, M. T., Merino, L., & Ollero, A. (2013). Decentralized multi-robot cooperation with
auctioned POMDPs. The International Journal of Robotics Research, 32(6), 650–671.

 12. Corah, M., & Michael, N. (2019). Distributed matroid-constrained submodular maximization for
multi-robot exploration: Theory and practice. Autonomous Robots, 43(2), 485–501.

 13. DeGroot, M. H. (2004). Optimal statistical decisions. Hoboken: Wiley. Wiley Classics Library edition.
 14. Dibangoye, J. S., Amato, C., Buffet, O., & Charpillet, F. (2016). Optimally solving Dec-POMDPs as

continuous-state MDPs. Journal of Artificial Intelligence Research, 55, 443–497.

(24)palone(m̂ = 0 ∣ mk) =

{
0.80 if mk = 0

0.15 if mk = 1
,

(25)ptogether(m̂ = 0 ∣ mk) =

{
0.99 if mk = 0

0.05 if mk = 1

Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

Page 43 of 44 42

 15. Fehr, M., Buffet, O., Thomas, V., & Dibangoye, J. (2018). rho-POMDPs have Lipschitz-continu-
ous epsilon-optimal value functions. In Advances in neural information processing systems (pp.
6933–6943).

 16. Fioretto, F., Pontelli, E., & Yeoh, W. (2018). Distributed constraint optimization problems and applica-
tions: A survey. Journal of Artificial Intelligence Research, 61, 623–698.

 17. Gharesifard, B., & Smith, S. L. (2017). Distributed submodular maximization with limited informa-
tion. IEEE Transactions on Control of Network Systems, 5(4), 1635–1645.

 18. Goldman, C. V., & Zilberstein, S. (2003). Optimizing information exchange in cooperative multi-agent
systems. In Autonomous agents and multiagent systems (AAMAS) (pp. 137–144).

 19. Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming for partially observ-
able stochastic games. In AAAI conference on artificial intelligence (pp. 709–715).

 20. Hero, A. O., & Cochran, D. (2011). Sensor management: Past, present, and future. IEEE Sensors Jour-
nal, 11(12), 3064–3075.

 21. Hollinger, G. A., & Singh, S. (2012). Multirobot coordination with periodic connectivity: Theory and
experiments. IEEE Transactions on Robotics, 28(4), 967–973.

 22. Jain, M., Taylor, M., Tambe, M., & Yokoo, M. (2009). DCOPs meet the real world: Exploring
unknown reward matrices with applications to mobile sensor networks. In it International joint con-
ference on artificial intelligence (IJCAI).

 23. Julian, B. J., Angermann, M., Schwager, M., & Rus, D. (2012). Distributed robotic sensor net-
works: An information-theoretic approach. The International Journal of Robotics Research, 31(10),
1134–1154.

 24. Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian pro-
cesses: Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research,
9(Feb), 235–284.

 25. Lalitha, A., & Javidi, T. (2017). Learning via active hypothesis testing over networks. In IEEE
information theory workshop (ITW) (pp. 374–378).

 26. Lalitha, A., Javidi, T., & Sarwate, A. D. (2018). Social learning and distributed hypothesis testing.
IEEE Transactions on Information Theory, 64(9), 6161–6179.

 27. Lauri, M., Heinänen, E., & Frintrop, S. (2017). Multi-robot active information gathering with peri-
odic communication. In IEEE international conference on robotics and automation (ICRA) (pp.
851–856).

 28. Lauri, M., Pajarinen, J., & Peters, J. (2019). Information gathering in decentralized POMDPs by policy
graph improvement. In Autonomous agents and multiagent systems (AAMAS) (pp. 1143–1151).

 29. MacDermed, L. C., & Isbell, C. L. (2013). Point based value iteration with optimal belief compres-
sion for Dec-POMDPs. In Advances in neural information processing systems (pp. 100–108).

 30. Meier, L., Peschon, J., & Dressler, R. (1967). Optimal control of measurement subsystems. IEEE
Transactions on Automatic Control, 12(5), 528–536.

 31. Moore, E. F. (1956). Gedanken-experiments on sequential machines. Automata Studies, 34, 129–153.
 32. Murphy, K. (2012). Machine learning: A probabilistic perspective. Cambridge: MIT Press.
 33. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., & Marsella, S. (2003). Taming decentralized POM-

DPs: Towards efficient policy computation for multiagent settings. In International joint conference
on artificial intelligence (IJCAI) (pp. 705–711).

 34. Nguyen, D. T., Yeoh, W., Lau, H. C., Zilberstein, S., & Zhang, C. (2014). Decentralized multi-
agent reinforcement learning in average-reward dynamic DCOPs. In AAAI conference on artificial
intelligence.

 35. Oliehoek, F. A. (2013). Sufficient plan-time statistics for decentralized POMDPs. In International
joint conference on artificial intelligence (IJCAI) (pp. 302–308).

 36. Oliehoek, F. A., & Amato, C. (2014). Dec-POMDPs as non-observable MDPs. IAS technical report
IAS-UVA-14-01, Intelligent Systems Lab, University of Amsterdam, Amsterdam, The Netherlands.

 37. Oliehoek, F. A., & Amato, C. (2016). A concise introduction to decentralized POMDPs. Berlin:
Springer.

 38. Oliehoek, F. A., Spaan, M. T., Amato, C., & Whiteson, S. (2013). Incremental clustering and
expansion for faster optimal planning in Dec-POMDPs. Journal of Artificial Intelligence Research,
46, 449–509.

 39. Oliehoek, F. A., Spaan, M. T., Whiteson, S., & Vlassis, N. (2008). Exploiting locality of interaction
in factored Dec-POMDPs. In Autonomous agents and multiagent systems (AAMAS) (pp. 517–524).

 40. Oliehoek, F. A., Spaan, M. T. J., & Vlassis, N. (2008). Optimal and approximate q-value functions
for decentralized POMDPs. Journal of Artificial Intelligence Research, 32(1), 289–353.

 Autonomous Agents and Multi-Agent Systems (2020) 34:42

1 3

42 Page 44 of 44

 41. Omidshafiei, S., Agha-Mohammadi, A. A., Amato, C., Liu, S. Y., How, J. P., & Vian, J. (2017).
Decentralized control of multi-robot partially observable Markov decision processes using belief
space macro-actions. The International Journal of Robotics Research, 36(2), 231–258.

 42. Pajarinen, J. K., & Peltonen, J. (2011). Periodic finite state controllers for efficient POMDP and
DEC-POMDP planning. In Advances in neural information processing systems (pp. 2636–2644).

 43. Rabinovich, Z., Goldman, C. V., & Rosenschein, J. S. (2003). The complexity of multiagent systems:
The price of silence. In Autonomous agents and multiagent systems (AAMAS) (pp. 1102–1103).

 44. Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge: Cambridge University Press.
 45. Satsangi, Y., Whiteson, S., Oliehoek, F. A., & Spaan, M. T. (2018). Exploiting submodular value

functions for scaling up active perception. Autonomous Robots, 42(2), 209–233.
 46. Schlotfeldt, B., Thakur, D., Atanasov, N., Kumar, V., & Pappas, G. J. (2018). Anytime planning for

decentralized multirobot active information gathering. IEEE Robotics and Automation Letters, 3(2),
1025–1032.

 47. Seuken, S., & Zilberstein, S. (2007). Memory-bounded dynamic programming for DEC-POMDPs.
In International joint conference on artificial intelligence (IJCAI) (pp. 2009–2015).

 48. Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable Markov pro-
cesses over a finite horizon. Operations Research, 21(5), 1071–1088.

 49. Spaan, M. T., Gordon, G. J., & Vlassis, N. (2006). Decentralized planning under uncertainty for teams
of communicating agents. In Autonomous agents and multiagent systems (AAMAS) (pp. 249–256).

 50. Spaan, M. T., Veiga, T. S., & Lima, P. U. (2015). Decision-theoretic planning under uncertainty with
information rewards for active cooperative perception. Autonomous Agents and Multi-Agent Systems,
29(6), 1157–1185.

 51. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge: MIT Press.
 52. Szer, D., Charpillet, F., & Zilberstein, S. (2005). MAA*: A heuristic search algorithm for solving

decentralized POMDPs. In Uncertainty in artificial intelligence (UAI) (pp. 576–583).
 53. Taylor, M. E., Jain, M., Jin, Y., Yokoo, M., & Tambe, M. (2010). When should there be a “me” in a

“team”?: Distributed multi-agent optimization under uncertainty. In Autonomous agents and multia-
gent systems (AAMAS) (pp. 109–116).

 54. Taylor, M. E., Jain, M., Tandon, P., Yokoo, M., & Tambe, M. (2011). Distributed on-line multi-agent
optimization under uncertainty: Balancing exploration and exploitation. Advances in Complex Systems,
14(03), 471–528.

 55. Wu, F., Zilberstein, S., & Chen, X. (2010). Rollout sampling policy iteration for decentralized POM-
DPs. In Uncertainty in artificial intelligence (UAI) (pp. 666–673).

 56. Wu, F., Zilberstein, S., & Chen, X. (2011). Online planning for multi-agent systems with bounded
communication. Artificial Intelligence, 175(2), 487–511.

 57. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., & Sycara, K. (2015). Distributed constraint opti-
mization for teams of mobile sensing agents. Autonomous Agents and Multi-Agent Systems, 29(3),
495–536.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Multi-agent active information gathering in discrete and continuous-state decentralized POMDPs by policy graph improvement
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related work
	2.1 Multi-agent active information gathering
	2.2 Decentralized POMDPs

	3 Decentralized POMDPs
	3.1 Histories and policies
	3.2 Bayes filter
	3.3 Value of a policy

	4 Value of a policy node
	4.1 History consistency
	4.2 Node reachability probabilities
	4.3 Value of policy nodes

	5 Convex-reward Dec-POMDPs
	6 The nonlinear policy graph improvement algorithm
	6.1 The forward pass
	6.2 The backward pass
	6.3 Computational complexity
	6.4 Implementation details

	7 Non-linear policy graph improvement for continuous-state problems
	7.1 Forward pass
	7.2 Backward pass

	8 Experiments
	8.1 Discrete domains
	8.1.1 Experimental setup
	8.1.2 Results

	8.2 Continuous-state source seeking
	8.2.1 Experimental setup
	8.2.2 Results

	9 Conclusion and future work
	Acknowledgements
	References

