
Self-Paced Deep Reinforcement Learning

Pascal Klink1, Carlo D’Eramo1, Jan Peters1, Joni Pajarinen1,2

1 Intelligent Autonomous Systems, Technische Universität Darmstadt, Germany
2 Department of Electrical Engineering and Automation, Aalto University, Finland

Correspondence to: pascal.klink@tu-darmstadt.de

Abstract

Curriculum reinforcement learning (CRL) improves the learning speed and stability
of an agent by exposing it to a tailored series of tasks throughout learning. Despite
empirical successes, an open question in CRL is how to automatically generate a
curriculum for a given reinforcement learning (RL) agent, avoiding manual design.
In this paper, we propose an answer by interpreting the curriculum generation as
an inference problem, where distributions over tasks are progressively learned to
approach the target task. This approach leads to an automatic curriculum generation,
whose pace is controlled by the agent, with solid theoretical motivation and easily
integrated with deep RL algorithms. In the conducted experiments, the curricula
generated with the proposed algorithm significantly improve learning performance
across several environments and deep RL algorithms, matching or outperforming
state-of-the-art existing CRL algorithms.

1 Introduction

Reinforcement learning (RL) [1] enables agents to learn sophisticated behaviors from interaction with
an environment. Combinations of RL paradigms with powerful function approximators, commonly
referred to as deep RL (DRL), have resulted in the acquisition of superhuman performance in various
simulated domains [2, 3]. Despite these impressive results, DRL algorithms suffer from high sample
complexity. Hence, a large body of research aims to reduce sample complexity by improving the
explorative behavior of RL agents in a single task [4, 5, 6, 7].

Orthogonal to exploration methods, curriculum learning (CL) [8] for RL investigates the design of
task sequences that maximally benefit the learning progress of an RL agent, by promoting the transfer
of successful behavior between tasks in the sequence. To create a curriculum for a given problem, it
is both necessary to define a set of tasks from which it can be generated and, based on that, specify
how it is generated, i.e. how a task is selected given the current performance of the agent. This paper
addresses the curriculum generation problem, assuming access to a set of parameterized tasks.

Recently, an increasing number of algorithms for curriculum generation have been proposed, em-
pirically demonstrating that CL is an appropriate tool to improve the sample efficiency of DRL
algorithms [9, 10]. However, these algorithms are based on heuristics and concepts that are, as
of now, theoretically not well understood, preventing the establishment of rigorous improvements.
In contrast, we propose to generate the curriculum based on a principled inference view on RL.
Our approach generates the curriculum based on two quantities: The value function of the agent
and the KL divergence to a target distribution of tasks. The resulting curriculum trades off task
complexity (reflected in the value function) and the incorporation of desired tasks (reflected by the
KL divergence). Our approach is conceptually similar to the self-paced learning (SPL) paradigm in
supervised learning [11], which has only found application to RL in limited settings [12, 13].

Contribution We propose a new CRL algorithm, whose behavior is well explained as performing
approximate inference on the common latent variable model (LVM) for RL [14, 15] (Section 4).

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

This enables principled improvements through the incorporation of advanced inference techniques.
Combined with the well-known DRL algorithms TRPO, PPO and SAC [16, 17, 18], our method
matches or surpasses the performance of state-of-the-art CRL methods in environments of different
complexity and with sparse and dense rewards (Section 5).

2 Related Work

Simultaneously evolving the learning task with the learner has been investigated in a variety of fields
ranging from behavioral psychology [19] to evolutionary robotics [20] and RL [21]. For supervised
learning (SL), this principle was given the name curriculum learning [8]. This name has by now also
been established in the RL community, where a variety of algorithms, aiming to generate curricula
that maximally benefit the learner, have been proposed. Narvekar and Stone [22] showed that learning
to create the optimal curriculum can be computationally harder than learning the entire task from
scratch, motivating research on tractable approximations.

Keeping the agent’s success rate within a certain range allowed to create curricula that drastically
improve sample efficiency in tasks with binary reward functions or success indicators [23, 10, 24].
Many CRL methods [25, 26, 27, 28] have been proposed inspired by the idea of ‘curiosity’ or
‘intrinsic motivation’ [29, 30] – terms that refer to the way humans organize autonomous learning
even in the absence of a task to be accomplished. Despite the empirical success, no theoretical
foundation has been developed for the aforementioned methods, preventing principled improvements.

Another approach to curriculum generation has been explored under the name self-paced learning
(SPL) for SL [11, 31, 32], proposing to generate a curriculum by optimizing the trade-off between
exposing the learner to all available training samples and selecting samples in which it currently
performs well. Despite its widespread application and empirical success in SL tasks, SPL has only
been applied in a limited way to RL problems, restricting its use to the regression of the value function
from an experience buffer [13] or to a strictly episodic RL setting [12]. Our method connects to this
line of research, formulating the curriculum generation as a trade-off optimization of similar fashion.
While the work by Ren et al. [13] is orthogonal to ours, we identify the result of Klink et al. [12] as
a special case of our inference view. Besides allowing the combination of SPL and modern DRL
algorithms to solve more complex tasks, the inference view presents a unified theory of using the
self-paced learning paradigm for RL.

As we interpret RL from an inference perspective over the course of this paper, we wish to briefly
point to several works employing this perspective [33, 34, 35, 15, 14]. Taking an inference perspective
is beneficial when dealing with inverse problems or problems that require tractable approximations
[36, 37]. For RL, it motivates regularization techniques such as the concept of maximum- or relative
entropy [38, 18, 39] and stimulates the development of new, and interpretation of, existing algorithms
from a common view [40, 41]. Due to a common language, algorithmic improvements on approximate
inference [42, 43, 44] can be shared across domains.

3 Preliminaries

We formulate our approach in the domain of reinforcement learning (RL) for contextual Markov
decision processes (CMDPs) [45, 46]. A CMDP is a tuple <C,S,A,M>, whereM(c) is a function
that maps a context c ∈ C to a Markov decision process (MDP)M(c)=<S,A, pc, rc, p0,c>. An
MDP is an abstract environment with states s ∈ S , actions a ∈ A, transition probabilities pc(s′|s,a),
reward function rc : S × A 7→ R and initial state distribution p0,c(s). Typically S, A and C are
discrete spaces or subsets of Rn. We can think of a CMDP as a parametric family of MDPs, which
share the same state-action space. Such a parametric family of MDPs allows to share policies
and representations between them [47], both being especially useful for CRL. RL for CMDPs
encompasses approaches that aim to find a policy π(a|s, c) which maximizes the expected return
over trajectories τ = {(st,at)|t ≥ 0}

J(µ, π)=Eµ(c),pπ(τ |c)

[∑
t≥0

γtrc(st,at)

]
, pπ(τ |c)=p0,c(s0)

∏
t≥0

pc(st+1|st,at)π(at|st, c), (1)

with discount factor γ ∈ [0, 1) and a probability distribution over contexts µ(c), encoding which con-
texts the agent is expected to encounter. We will often use the term policy and agent interchangeably,

2

as the policy represents the behavior of a (possibly virtual) agent. RL algorithms parametrize the
policy π with parameters ω ∈ Rn. We will refer to this parametric policy as πω , sometimes replacing
πω by ω in function arguments or subscripts, e.g. writing J(µ,ω) or pω(τ |c). The so-called value
function encodes the expected long-term reward when following a policy πω starting in state s

Vω(s, c)=Epω(τ |s,c)

[∑
t≥0

γtrc(st,at)

]
, pω(τ |s, c)=δss0

∏
t≥0

pc(st+1|st,at)πω(at|st, c), (2)

where δss0 is the delta-distribution. The above value function for CMDPs has been introduced as a
general or universal value function [48, 47]. We will, however, just refer to it as a value function,
since a CMDP can be expressed as an MDP with extended state space. We see that the value function
relates to Eq. 1 via J(µ,ω) = Eµ(c),p0,c(s0) [Vω(s0, c)].

4 Self-Paced Deep Reinforcement Learning

Having established the necessary notation, we now introduce a curriculum to the contextual RL
objective (Eq. 1) by allowing the agent to choose a distribution of tasks pν(c), parameterized by
ν ∈ Rm, to train on. Put differently, we allow the RL agent to maximize J(pν , π) under a chosen pν ,
only ultimately requiring it to match the “desired” task distribution µ(c) to ensure that the policy is
indeed a local maximizer of J(µ, π). We achieve this by reformulating the RL objective as

max
ν,ω

J(ν,ω)− αDKL (pν(c)‖µ(c)) , α ≥ 0. (3)

In the above objective, DKL (·‖·) is the KL divergence between two probability distributions. The
parameter α controls the aforementioned trade-off between freely choosing pν(c) and matching
µ(c). When only optimizing Objective (3) w.r.t. ω for a given ν, we simply optimize the contextual
RL objective (Eq. 1) over the context distribution pν(c). On the contrary, if Objective (3) is only
optimized w.r.t. ν for a given policy πω, then α controls the trade-off between incorporating tasks
in which the policy obtains high reward and matching µ(c). So if we optimize Objective (3) in
a block-coordinate ascent manner, we may use standard RL algorithms to train the policy under
fixed pν(c) and then adjust pν(c) according to the obtained policy. If we keep increasing α during
this procedure, pν(c) will ultimately match µ(c) due to the KL divergence penalty and we train
on the true objective. The benefit of such an interpolation between task distributions under which
the agent initially performs well and µ(c) is that the agent may be able to adapt well-performing
behavior as the environments gradually transform. This can, in turn, avoid learning poor behavior
and increase learning speed. The outlined idea resembles the paradigm of self-paced learning for
supervised learning [11], where a regression- or classification model as well as its training set are
alternatingly optimized. The training set for a given model is chosen by trading-off favoring samples
under which the model has low prediction error and incorporating all samples in the dataset. Indeed,
the idea of generating curricula for RL using the self-paced learning paradigm has previously been
investigated by Klink et al. [12]. However, they investigate the curriculum generation only in the
episodic RL setting and jointly update the policy and context distribution. This ties the curriculum
generation to a specific (episodic) RL algorithm, that, as we will see in the experiments, is not suited
for high-dimensional policy parameterizations. Our formulation is not limited to such a specific
setting, allowing to use the resulting algorithm for curriculum generation with any RL algorithm.
Indeed, we will now relate the maximization of Objective (3) w.r.t. ν to an inference perspective,
showing that our formulation explains the results obtained by Klink et al. [12].

Interpretation as Inference Objective (3) can be motivated by taking an inference perspective
on RL [14]. In this inference perspective, we introduce an ‘optimality’ event O, whose probability
of occurring is defined via a monotonic transformation f : R 7→ R≥0 of the cumulative reward
R(τ, c) =

∑
t≥0 rc(st,at), yielding the following latent variable model (LVM)

pν,ω(O) =

∫
pν,ω(O, τ, c)dτdc ∝

∫
f(R(τ, c))pω(τ |c)pν(c)dτdc. (4)

Under appropriate choice of f(·) and minor modification of the transition dynamics to account for
the discounting factor γ [15, 14], maximizing LVM (4) w.r.t. ω is equal to the maximization of
J(pν , πω) w.r.t. πω . This setting is well explored and allowed to identify various RL algorithms as

3

approximate applications of the expectation maximization (EM) algorithm to LVM (4) to maximize
pν,ω(O) w.r.t ω [40]. Our idea of maximizing Objective (3) in a block-coordinate ascent manner is
readily supported by the EM algorithm, since its steps can be executed alternatingly w.r.t. ν and ω.
Consequently, we now investigate the case when maximizing pν,ω(O) w.r.t. ν, showing that known
regularization techniques for approximate inference motivate Objective (3). For brevity, we only state
the main results here and refer to Appendix A for detailed proofs and explanations of EM.

When maximizing pν,ω(O) w.r.t. ν using EM, we introduce a variational distribution q(c) and
alternate between the so called E-Step, in which q(c) is found by minimizing DKL (q(c)‖pν,ω(c|O)),
and the M-Step, in which ν is found by minimizing the KL divergence to the previously obtained
variational distribution DKL (q(c)‖pν(c)). Typically q(c) is not restricted to a parametric form and
hence matches pν,ω(c|O) after the E-Step. We now state our main theoretical insight, showing
exactly what approximations and modifications to the regular EM algorithm are required to retrieve
Objective 3.

Theorem 1. Choosing f(·)= exp (·), maximizing Objective (3) minus a KL divergence term
DKL (pν(c)‖pν̃(c)) is equal to executing E- and M-Step while restricting q(c) to be of the same para-

metric form as pν(c) and introducing a regularized E-Step DKL

(
q(c)

∥∥∥ 1
Z pν̃,ω(c|O)

1
1+αµ(c)

α
1+α

)
.

Theorem 1 is interesting for many reasons. Firstly, the extra term in Objective (3) can be identified
as a regularization term, which penalizes a large deviation of pν(c) from pν̃(c). In the algorithm
we propose, we replace this penalty term by a constraint on the KL divergence between successive
context distributions, granting explicit control over their dissimilarity. This is beneficial when
estimating expectations in Objective (3) by a finite amount of samples. Next, restricting the variational
distribution to a parametric form is a known concept in RL. Abdolmaleki et al. [40] have shown
that it yields an explanation for the well-known on-policy algorithms TRPO and PPO [16, 17].
Finally, the regularized E-Step fits q(c) to a distribution that is referred to as a tempered posterior.
Tempering, or deterministic annealing, is used in variational inference to improve the approximation
of posterior distributions by gradually moving from the prior (in our case µ(c)) to the true posterior
(here pν,ω(c|O)) [44, 49, 50], which in above equation corresponds to gradually decreasing α to zero.
We, however, increasingly enforce pν(c) to match µ(c) by gradually increasing α. To understand
this “inverse” behavior, we need to remember that the maximization w.r.t. ν solely aims to generate
context distributions pν(c) that facilitate the maximization of J(µ, πω) w.r.t. ω. This means to
initially encode contexts in which the event O is most likely, i.e. pω(O|c) is highest, and only
gradually match µ(c). To conclude this theoretical section, we note that the update rule proposed by
Klink et al. [12] can be recovered from our formulation.

Theorem 2. Choosing f(·)= exp (·/η), the (unrestricted) variational distribution after the reg-

ularized E-Step is given by q(c)∝pν(c) exp
(
Vω(c)+ηα(log(µ(c))−log(pν(c)))

η+ηα

)
, where Vω(c) is the

‘episodic value function’ as defined in [34].

The variational distribution in Theorem 2 resembles the results in [12] with the only difference that α
is scaled by η. Hence, for a given schedule of α, we simply need to scale every value in this schedule
by 1/η to match the results from Klink et al. [12].

Algorithmic Realization As previously mentioned, we maximize Objective (3) in a block-
coordinate ascent manner, i.e. use standard RL algorithms to optimize J(pνi , πω) w.r.t. πω under
the current context distribution pνi . Consequently, we only need to develop ways to optimize Ob-
jective (3) w.r.t. pν for a given policy πωi . We can run any RL algorithm to generate a set of
trajectoriesDi=

{
(ck, τk)

∣∣k ∈ [1,K] , ck ∼ pνi(c), τk ∼ πωi(τ |ck)
}

alongside an improved policy
πωi+1 . Furthermore, most state-of-the-art RL algorithms fit a value function Vωi+1(s, c) while
generating the policy πωi+1 . Even if the employed RL algorithm does not generate an estimate of
Vωi+1(s, c), it is easy to compute one using standard techniques. We can exploit the connection
between value function and RL objective J(p,ωi+1) = Ep(c),p0,c(s0)

[
Vωi+1

(s0, c)
]

to optimize

max
νi+1

1

K

K∑
k=1

pνi+1

(
ck
)

pνi (ck)
Vωi+1

(
sk0 , c

k
)
−αiDKL

(
pνi+1(c)

∥∥µ(c)
)

s.t. DKL
(
pνi+1(c)

∥∥pνi(c))≤ε.
(5)

4

Algorithm 1 Self-Paced Deep Reinforcement Learning

Input: Initial context distribution- and policy parameters ν0 and ω0, Target context distribution
µ(c), KL penalty proportion ζ, offset Nα, number of iterations N , Rollouts per policy update K
for i = 1 to N do

Agent Improvement:
Sample contexts: ck ∼ pνi(c), k = 1, . . . ,K
Rollout trajectories: τk ∼ πωi(τ |ck), k = 1, . . . ,K
Obtain πωi+1 from RL algorithm of choice using Di =

{
(ck, τk)

∣∣k = 1, . . . ,K
}

Estimate Vωi+1
(sk0 , c

k) for contexts ck (using the employed RL algorithm, if possible)
Context Distribution Update:
Obtain pνi+1

optimizing (Eq. 5), using αi = 0, if i ≤ Nα, else B(νi,Di) (Eq. 6)
end for

instead of Objective (3) to obtain νi+1. The first term in Objective (5) is an importance-weighted
approximation of J(νi+1,ωi+1). Motivated by Theorem 1, the KL divergence constraint between
subsequent context distributions pνi(c) and pνi+1

(c) avoids large jumps in the context distribution.
Above objective can be solved using any constrained optimization algorithm. In our implementation,
we use the trust-region algorithm implemented in the SciPy library [51]. In each iteration, the
parameter αi is chosen such that the KL divergence penalty w.r.t. the current context distribution is in
constant proportion ζ to the average reward obtained during the last iteration of policy optimization

αi = B(νi,Di) = ζ
1
K

∑K
k=1R

(
τk, ck

)
DKL (pνi(c)‖µ(c))

, R
(
τk, ck

)
=
∑
t≥0γ

trck
(
skt ,a

k
t

)
, (6)

as proposed by Klink et al. [12]. We further adopt their strategy of setting α to zero for the first
Nα iterations. This allows to taylor the context distribution to the learner in early iterations, if the
initial context distribution is uninformative, i.e. covers large parts of the context space. Note that
this is a naive choice, that nonetheless worked sufficiently well in our experiments. At this point, the
connection to tempered inference allows for principled future improvements by using more advanced
methods to choose α [44]. For the experiments, we restrict pν(c) to be Gaussian. Consequently,
Objective (5) is optimized w.r.t. the mean µ and covariance Σ of the context distribution. Again, the
inference view readily motivates future improvements by using advanced sampling techniques [43, 42].
These techniques allow to directly sample from the variational distribution q(c) in Theorem 1,
bypassing the need to fit a parametric distribution and allowing to represent multi-modal distributions.
The outlined method is summarized in Algorithm 1.

5 Experiments

(a) Point-Mass (b) Ant (c) Ball-Catching

Figure 1: Environments used for experimental evaluation.
For the point mass environment (a), the upper plot shows
the target task. The shaded areas in picture (c) visualize the
target distribution of ball positions (green) as well as the ball
positions for which the initial policy succeeds (blue).

The aim of this section is to investi-
gate the performance and versatility of
the proposed curriculum reinforcement
learning algorithm (SPDL). To accom-
plish this, we evaluate SPDL in three
different environments with different
DRL algorithms to test the proposi-
tion that the learning scheme benefits
the performance of various RL algo-
rithms. We evaluate the performance
using TRPO [16], PPO [17] and SAC
[18]. For all DRL algorithms, we use
the implementations provided in the
Stable Baselines library [52]. 1

The first two environments aim at in-
vestigating the benefit of SPDL when
the purpose of the generated curricu-
lum is solely to facilitate the learning

1Code for running the experiments can be found at https://github.com/psclklnk/spdl

5

https://github.com/psclklnk/spdl

0 200 400 600 800 1000

Iteration

0

5

10

R
e
w

a
rd

Point Mass

0 200 400 600 800 1000

Iteration

0

5

10

Point Mass (2D)

-4 -2 0 2 4

Position

0.5

3

5.5

8

W
id

th

-4 -2 0 2 4

Position

-4 -2 0 2 4

Position

-4 -2 0 2 4

Position

-4 -2 0 2 4

Position

-4 -2 0 2 4

Position

SPDL ALP-GMM Random Default GoalGAN SPRL

Figure 2: Reward of different curricula in the Point Mass (2D and 3D) environment for TRPO. Mean
(thick line) and two times standard error (shaded area) is computed from 20 algorithm runs. The
lower plots show samples from the context distributions p(c) in the Point-Mass 2D environment at
iterations 0, 50, 80, 100, 120 and 200 (from left to right). Different colors and shapes of samples
indicate different algorithm runs. The black cross marks the mean of the target distribution µ(c).

of a hard target task, which the agent is not able to solve without a curriculum. For this purpose, we
create two environments that are conceptually similar to the point mass experiment considered by
SPRL [12]. The first one is a copy of the original experiment, but with an additional parameter to
the context space, as we will detail in the corresponding section. The second environment extends
the original experiment by replacing the point mass with a torque-controlled quadruped ‘ant’. This
increases the complexity of the underlying control problem, requiring the capacity of deep neural
network function approximators used in DRL algorithms. The final environment is a robotic ball-
catching environment. This environment constitutes a shift in curriculum paradigm as well as reward
function. Instead of guiding learning towards a specific target task, this third environment requires to
learn a ball-catching policy over a wide range of initial states (ball position and velocity). The reward
function is sparse compared to the dense ones employed in the first two environments.

To judge the performance of SPDL, we compare the obtained results to state-of-the-art CRL algo-
rithms ALP-GMM [27], which is based on the concept of Intrinsic Motivation, GoalGAN [23], which
relies on the notion of a success indicator to define a curriculum, and SPRL [12], the episodic coun-
terpart of our algorithm. Furthermore, we compare to curricula consisting of tasks uniformly sampled
from the context space (referred to as ‘Random’ in the plots) and learning without a curriculum
(referred to as ‘Default’). Additional details on the experiments as well as qualitative evaluations of
them can be found in Appendix B.

5.1 Point Mass Environment

In this environment, the agent controls a point mass that needs to be navigated through a gate of
given size and position to reach a desired target in a two-dimensional world. If the point mass crashes
into the wall, the experiment is stopped. The agent moves the point mass by applying forces and the
reward decays in a squared exponential manner with increasing distance to the goal. In our version
of the experiment, the contextual variable c ∈ R3 changes the width and position of the gate as
well as the dynamic friction coefficient of the ground on which the point mass slides. The target
context distribution µ(c) is a narrow Gaussian with negligible noise that encodes a small gate at a
specific position and a dynamic friction coefficient of 0. Figure 1 shows two different instances of the
environment, one of them being the target task.

Figure 2 shows the results of two different experiments in this environment, one where the curriculum
is generated over the full context space and one in which the friction parameter is fixed to its target
value of 0. As Figure 2 and Table 1 indicate, SPDL significantly increases the asymptotic reward on
the target task compared to all other methods. Furthermore, we see that SPRL, which we applied
by defining the episodic RL policy p(ω|c) to choose the weights ω of the policy network for a

6

Table 1: Average final reward and standard error of different curricula and RL algorithms in the
two Point Mass environments with three (P3D) and two (P2D) context dimensions as well as the
Ball-Catching environment (BC). The data is computed from 20 algorithm runs. Significantly better
results according to a t-test with p < 1% are highlighted in bold. The asterisks mark runs of
SPDL/GoalGAN with an initialized context distribution and runs of Default learning without policy
initialization.

PPO (P3D) SAC (P3D) PPO (P2D) SAC (P2D) TRPO (BC) PPO (BC)

ALP-GMM 2.34± 0.2 0.96± 0.3 5.24± 0.4 1.15± 0.4 39.8± 1.1 46.5± 0.7
GoalGAN 0.50± 0.0 1.08± 0.4 1.39± 0.5 0.72± 0.2 42.5± 1.6 42.6± 2.7
GoalGAN* - - - - 45.8± 1.0 45.9± 1.0
SPDL 9.35± 0.1 4.43± 0.7 9.02± 0.4 4.69± 0.7 47.0± 2.0 53.9± 0.4
SPDL* - - - - 43.3± 2.0 49.3± 1.4
Random 0.53± 0.0 0.60± 0.1 1.34± 0.3 0.93± 0.3 - -
Default 2.46± 0.0 2.26± 0.0 2.47± 0.0 2.23± 0.0 21.0± 0.3 22.1± 0.3
Default* - - - - 21.2± 0.3 23.0± 0.7

given context c, also leads to a good performance. Increasing the dimension of the context space
has a stronger negative impact on the performance of the other CL algorithms than on both SPDL
and SPRL, where it only negligibly decreases the performance. We suspect that this effect arises
because both ALP-GMM and GoalGAN have no notion of a target distribution. Consequently, for a
context distribution µ(c) with negligible variance, a higher context dimension decreases the average
proximity of sampled tasks to the target one. By having a notion of a target distribution, SPDL
ultimately samples contexts that are close to the desired ones, regardless of the dimension. The
context distributions p(c) visualized in Figure 2 show that the agent focuses on wide gates in a variety
of positions in early iterations. Subsequently, the size of the gate is decreased and the position of the
gate is shifted to match the target one. This process is carried out at different pace and in different
ways, sometimes preferring to first shrink the width of the gate before moving its position while
sometimes doing both simultaneously.

5.2 Ant Environment

We replace the point mass in the previous environment with a four-legged ant similar to the one in the
OpenAI Gym simulation environment [53]. 2 The goal is to reach the other side of a wall by passing
through a gate, whose width and position is determined by the contextual variable c ∈ R2 (Figure 1).

Opposed to the previous environment, an application of SPRL is not straightforward in this environ-
ment, since the episodic policy needs to choose weights for a policy network with 6464 parameters.
In such high-dimensional spaces, fitting the new episodic policy (i.e. a 6464-dimensional Gaussian)
to the generated samples requires significantly more computation time than an update of a step-based
policy, taking up to 25 minutes per update on our hardware. Furthermore, this step is prone to
numerical instabilities due to the large covariance matrix that needs to be estimated. This observation
stresses the benefit of our CRL approach, as it unifies the curriculum generation for episodic and
step-based RL algorithms, allowing to choose the most beneficial one for the task at hand.

In this environment, we were only able to evaluate the CL algorithms using PPO. This is because
the implementations of TRPO and SAC in the Stable-Baselines library do not allow to make use
of the parallelization capabilities of the Isaac Gym simulator, leading to prohibitive running times
(details in Appendix B).

Looking at Figure 3, we see that SPDL allows the learning agent to escape the local optimum which
results from the agent not finding the gate to pass through. ALP-GMM and a random curriculum do
not improve the reward over directly learning on the target task. However, as we show in Appendix B,
both ALP-GMM and a random curriculum improve the qualitative performance, as they sometimes
allow to move the ant through the gate. Nonetheless, this behavior is unreliable and inefficient,
causing the action penalties in combination with the discount factor to prevent this better behavior
from being reflected in the reward.

2We use the Nvidia Isaac Gym simulator [54] for this experiment.

7

0 50 100 150 200 250

Iteration

0

1000

R
e
w

a
rd

Ant

0 100 200 300 400 500

Iteration

0

20

40

Ball Catching

-1 -0.5 0

X-Position

1

1.4

1.8

Y
-P

o
si

ti
o
n

-1 -0.5 0

X-Position

-1 -0.5 0

X-Position

-1 -0.5 0

X-Position

-1 -0.5 0

X-Position

-1 -0.5 0

X-Position

SPDL ALP-GMM Random Default GoalGAN SPDL* GoalGAN* Default*

Figure 3: Mean (thick line) and two times standard error (shaded area) of the reward achieved with
different curricula in the Ant environment for PPO and in the Ball-Catching environment for SAC
(upper plots). The statistics are computed from 20 seeds. For Ball-Catching, runs of SPDL/GoalGAN
with an initialized context distribution and runs of Default learning without policy initialization are
indicated by asterisks. The lower plots show ball positions in the ‘catching’ plane sampled from the
context distributions p(c) in the Ball-Catching environment at iterations 0, 50, 80, 110, 150 and 200
(from left to right). Different sample colors and shapes indicate different algorithm runs. Given that
p(c) is initialized with µ(c), the samples in iteration 0 visualize the target distribution.

5.3 Ball-Catching Environment

Due to a sparse reward function and a broad target task distribution, this final environment is
drastically different from the previous ones. In this environment, the agent needs to control a Barrett
WAM robot to catch a ball thrown towards it. The reward function is sparse, only rewarding the robot
when it catches the ball and penalizing it for excessive movements. In the simulated environment,
the ball is said to be caught if it is in contact with the end effector that is attached to the robot. The
context c ∈ R3 parameterizes the distance to the robot from which the ball is thrown as well as its
target position in a plane that intersects the base of the robot. Figure 1 shows the robot as well as the
target distribution over the ball positions in the aforementioned ‘catching’ plane. In this environment,
the context c is not visible to the policy, as it only changes the initial state distribution p(s0) via the
encoded target position and initial distance to the robot. Given that the initial state is already observed
by the policy, observing the context is superfluous. To tackle this learning task with a curriculum, we
initialize the policy of the RL algorithms to hold the robot’s initial position. This creates a subspace
in the context space in which the policy already performs well, i.e. where the target position of the
ball coincides with the initial end effector position. This can be leveraged by CL algorithms.

Since SPDL and GoalGAN support to specify the initial context distribution, we investigate whether
this feature can be exploited by choosing the initial context distribution to encode the aforementioned
tasks in which the initial policy performs well. When directly learning on the target context distribu-
tion without a curriculum, it is not clear whether the policy initialization benefits learning. Hence, we
evaluate the performance both with and without a pre-trained policy when not using a curriculum.

Figure 3 and Table 1 show the performance of the investigated curriculum learning approaches.
We see that sampling tasks directly from the target distribution does not allow the agent to learn
a meaningful policy, regardless of the initial one. Further, all curricula enable learning in this
environment and achieve a similar reward. The results also highlight that initialization of the context
distribution does not significantly change the performance in this task. The context distributions
p(c) visualized in Figure 3 indicate that SPDL shrinks the initially wide context distribution in early
iterations to recover the subspace of ball target positions, in which the initial policy performs well.
From there, the context distribution then gradually matches the target one. As in the point mass
experiment, this happens with differing pace, as can be seen in the visualizations of p(c) in Figure 3
for iteration 200: Two of the three distributions fully match the target distribution while the third only
covers half of it.

8

6 Conclusion

We proposed self-paced deep reinforcement learning, an inference-derived curriculum reinforcement
learning algorithm. The resulting method is easy to use, allows to draw connections to established
regularization techniques for inference, and generalizes previous results in the domain of CRL. In
our experiments, the method matched or surpassed performance of other CRL algorithms, especially
excelling in tasks where learning is aimed at a single target task.

As discussed, the inference view provides many possibilities for future improvements of the proposed
algorithm, such as using more elaborate methods for choosing the hyperparameter α or approximating
the variational distribution q(c) using more advanced methods. Such algorithmic improvements are
expected to further improve the efficiency of the algorithm. Furthermore, a re-interpretation of the
self-paced learning algorithm for supervised learning tasks using the presented inference perspective
may allow for a unifying view across the boundary of both supervised- and reinforcement learning,
allowing to share algorithmic advances.

Broader Impact

This work proposed a method to speed up and stabilize the learning of autonomous agents via
curriculum reinforcement learning. In a practical scenario, such methods can reduce the amount of
time, energy, or manual labor required to create autonomous agents for a given task, allowing for
economic benefits. Given the inherent goal of RL to create versatile learning algorithms, free of
ties to a specific domain, RL algorithms can be used in a variety of fields, ranging from automating
aspects of elderly care over autonomous vehicles to military uses. Given the abstract nature of our
work, it is, however, hard to estimate the immediate consequences of our work on society, since the
algorithmic benefits arising from our work apply equally to all of the aforementioned examples.

Acknowledgments and Disclosure of Funding

This project has received funding from the DFG project PA3179/1-1 (ROBOLEAP). During parts of
the work on this paper, Joni Pajarinen was affiliated with Tampere University, Finland.

References
[1] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, volume 135.

MIT Press Cambridge, 1998.

[2] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354–359, 2017.

[3] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[4] Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with
the successor representation. In AAAI, 2020.

[5] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. In NIPS, 2017.

[6] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In NIPS, 2016.

[7] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In NIPS, 2016.

[8] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In ICML, 2009.

9

[9] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom
Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by
playing-solving sparse reward tasks from scratch. ICML, 2018.

[10] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In CoRL, 2017.

[11] M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In NIPS, 2010.

[12] Pascal Klink, Hany Abdulsamad, Boris Belousov, and Jan Peters. Self-paced contextual
reinforcement learning. In CoRL, 2019.

[13] Zhipeng Ren, Daoyi Dong, Huaxiong Li, and Chunlin Chen. Self-paced prioritized curriculum
learning with coverage penalty in deep reinforcement learning. IEEE transactions on neural
networks and learning systems, 29(6):2216–2226, 2018.

[14] Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous
state markov decision processes. In ICML, 2006.

[15] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909, 2018.

[16] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

[19] Burrhus Frederic Skinner. The behavior of organisms: An experimental analysis. BF Skinner
Foundation, 2019.

[20] J Bongard and Hod Lipson. Once more unto the breach: Co-evolving a robot and its simulator.
In ALIFE, 2004.

[21] Tom Erez and William D Smart. What does shaping mean for computational reinforcement
learning? In ICDL, 2008.

[22] Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. In
AAMAS, 2019.

[23] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In ICML, 2018.

[24] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. In NIPS, 2017.

[25] Jürgen Schmidhuber. Curious model-building control systems. In IJCNN, 1991.

[26] Adrien Baranes and Pierre-Yves Oudeyer. Intrinsically motivated goal exploration for active
motor learning in robots: A case study. In IROS, 2010.

[27] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms
for curriculum learning of deep rl in continuously parameterized environments. In CoRL, 2019.

[28] Pierre Fournier, Olivier Sigaud, Mohamed Chetouani, and Pierre-Yves Oudeyer. Accuracy-
based curriculum learning in deep reinforcement learning. arXiv preprint arXiv:1806.09614,
2018.

[29] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for
autonomous mental development. IEEE transactions on evolutionary computation, 11(2):
265–286, 2007.

10

[30] Douglas Blank, Deepak Kumar, Lisa Meeden, and James B Marshall. Bringing up robot: Fun-
damental mechanisms for creating a self-motivated, self-organizing architecture. Cybernetics
and Systems: An International Journal, 36(2):125–150, 2005.

[31] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann. Self-paced
curriculum learning. In AAAI, 2015.

[32] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexander Hauptmann.
Self-paced learning with diversity. In NIPS, 2014.

[33] Peter Dayan and Geoffrey E Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9(2):271–278, 1997.

[34] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for
robotics. Foundations and Trends R© in Robotics, 2(1–2):1–142, 2013.

[35] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and
reinforcement learning by approximate inference. In IJCAI, 2013.

[36] Philipp Hennig, Michael A Osborne, and Mark Girolami. Probabilistic numerics and uncertainty
in computations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 471(2179):20150142, 2015.

[37] Simon JD Prince. Computer vision: models, learning, and inference. Cambridge University
Press, 2012.

[38] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In AAAI, 2008.

[39] Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In AAAI,
2010.

[40] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and
Martin Riedmiller. Maximum a posteriori policy optimisation. In ICLR, 2018.

[41] Matthew Fellows, Anuj Mahajan, Tim GJ Rudner, and Shimon Whiteson. Virel: A variational
inference framework for reinforcement learning. In NIPS, 2019.

[42] Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, Jun Zhu, and Lawrence Carin. Under-
standing and accelerating particle-based variational inference. ICML, 2019.

[43] Andre Wibisono. Sampling as optimization in the space of measures: The langevin dynamics
as a composite optimization problem. COLT, 2018.

[44] Stephan Mandt, James McInerney, Farhan Abrol, Rajesh Ranganath, and David Blei. Variational
tempering. In AISTATS, 2016.

[45] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. arXiv
preprint arXiv:1502.02259, 2015.

[46] Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with
continuous side information. In ALT, 2018.

[47] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxi-
mators. In ICML, 2015.

[48] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam
White, and Doina Precup. Horde: a scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction. In AAMAS, 2011.

[49] Kentaro Katahira, Kazuho Watanabe, and Masato Okada. Deterministic annealing variant of
variational bayes method. In Journal of Physics: Conference Series, volume 95, page 012015.
IOP Publishing, 2008.

11

[50] Naonori Ueda and Ryohei Nakano. Deterministic annealing variant of the em algorithm. In
NIPS, 1995.

[51] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[52] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[53] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[54] Nvidia. Isaac gym. https://developer.nvidia.com/gtc/2019/video/S9918, 2019.
Accessed: 2020-02-06.

[55] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

12

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://developer.nvidia.com/gtc/2019/video/S9918

O O O

r0 r1 r2

a0 a1 a2

s0 s1 s2

c c c

Figure 4: The extended graphical model used for the presented CRL algorithm. Solid lines mark
connections that are present in the ‘single task’ RL problem. The dashed lines represent the additional
connections that occur in the contextual RL setting, where a contextual variable c influences the MDP.
Note that c and O refer to the same variables across all timesteps.

A Proofs

We start by restating the Latent-Variable Model for the Contextual RL setting

pν,ω(O) =

∫
pν,ω(O, τ, c)dτdc ∝

∫
f(R(τ, c))pω(τ |c)pν(c)dτdc, (7)

where p(O|τ, c) ∝ f(R(τ, c)) with R(τ, c) =
∑
t≥0 rc(st,at) and the monotonic transformation

f : R 7→ R≥0 defines the probability of trajectory τ being optimal in context c. In LVM (7), pν(c)
is the distribution over contexts and pω(τ |c) is the probability of a trajectory, that depends on the
policy πω(a|s, c)

pω(τ |c)=p0,c(s0)
∏
t≥0

p̄c(st+1|st,at)πω(at|st, c). (8)

Please note the distribution p̄c(st+1|st,at). This modified version of the original transition dynamics
pc(st+1|st,at) is used to account for the discouting factor γ ≤ 1 that is present in the infinite horizon
MDP setting. The dynamics p̄c are defined by introducing a terminal state sT , with r(sT ,a) = 0 for
all a ∈ A, to which a transition can occur from any state with probability 1− γ

p̄c(st+1|st,at) =


1, if st = sT and st+1 = sT
0, if st = sT and st+1 6= sT
(1− γ), if st 6= sT and st+1 = sT
γpc(st+1|st,at), else.

Figure 4 visualizes the structure of LVM (7). The term Latent-Variable Model arises because,
conceptually, we think about states, actions and contexts as being ‘hidden’. This means that there
is an underlying distribution over states, actions and contexts, which is, however, marginalized out,
leaving only the quantity of interest - the ‘optimality’ event O. This marginalization makes direct
optimization of likelihood (7) intractable. The EM algorithm [55], as applied in the main paper,
introduces a variational distribution q(c) which decomposes the logarithm of likelihood (7)

log (pν,ω(O)) =

∫
q(c) log (pν,ω(O)) dc (9)

=

∫
q(c) log

(
q(c)

q(c)

pν,ω(O, c)
pν,ω(c|O)

)
dc (10)

=Eq(c)

[
log

(
pν,ω(O, c)

q(c)

)]
+DKL (q(c)‖pν,ω(c|O)) . (11)

The reformulation of the marginal likelihood pν,ω(O) between lines (9) and (10) is possible because
pν,ω(O, c) = pν,ω(c|O)pν,ω(O). Decomposing the likelihood is beneficial, since it allows to split
the optimization of log (pν,ω(O)) into two steps that can be tackled individually, the so called E- and
M-Step. The E-Step minimizes the second term in Eq. (11), yielding q(c) = pν,ω(c|O) if q(c) is
not restricted to a parametric form. The M-Step then maximizes the first term of Eq. (11) w.r.t. ν.

Before proving our first result from the main paper, we quickly note that for our model, the M-Step
can be equally thought of as minimizing DKL (q(c)‖pν(c)) w.r.t. ν, since

Eq(c)

[
log

(
pν,ω(O, c)

q(c)

)]
= Eq(c) [log (pω(O|c))]− Eq(c)

[
log

(
q(c)

pν(c)

)]
, (12)

where the first term is constant w.r.t. ν and the second term is equal to −DKL (q(c)‖pν(c)).

13

A.1 Theorem 1

This theorem establishes the connection between the maximization of our proposed objective for
Curriculum generation w.r.t. ν

max
ν

J(ν,ω)− αDKL (pν(c)‖µ(c)) , α ≥ 0 (13)

and the discussed EM algorithm when applied to LVM 7. More precisely, we show that modifications
of the E-Step allow to relate Objective (13) to the execution of the E- and M-Step.
Theorem 1. Choosing f(·)= exp (·), maximizing Objective (13) minus a KL divergence term
DKL (pν(c)‖pν̃(c)) is equal to executing E- and M-Step while restricting q(c) to be of the same para-

metric form as pν(c) and introducing a regularized E-Step DKL

(
q(c)

∥∥∥ 1
Z pν̃,ω(c|O)

1
1+αµ(c)

α
1+α

)
.

Proof. As we restrict q(c) to be of the same parametric form as pν(c), an M-Step becomes superflu-
ous, because the optimal solution of this M-Step clearly matches q(c). We see that, when restricting
q(c) to the same parametric form as pν(c), executing E- and M-Step is equal to simply minimzing
the E-Step, where q(c) is replaced by pν(c)

min
ν
DKL

(
pν(c)

∥∥∥∥ 1

Z
pν̃,ω(c|O)

1
1+αµ(c)

α
1+α

)
. (14)

Consequently, we are left to show that above optimization problem is the same as the maximization
of Objective 13. This is, however, a task of simple reformulation

min
ν
DKL

(
pν(c)

∥∥∥∥ 1

Z
pν̃,ω(c|O)

1
1+αµ(c)

α
1+α

)
(15)

= min
ν
Z + Epν(c)

[
log

(
pν(c)

pν̃,ω(c|O)
1

1+αµ(c)
α

1+α

)]
(16)

= max
ν
−Z +

1

1 + α
Epν(c) [log (pω(O|c))] +

1

1 + α
pν̃,ω(O) (17)

− Epν(c)

[
log

(
pν(c)

pν̃(c)
1

1+αµ(c)
α

1+α

)]
. (18)

Before proceeding to reformulate above KL-Divergence, we note that we can simply remove the nor-
malization constant Z as well as the term 1

1+αpν̃,ω(O), since they are constant w.r.t. ν. Furthermore,
we can rescale the objective by 1 + α without changing the optimal solution, yielding

max
ν

Epν(c) [log (pω(O|c))]− (1 + α)Epν(c)

[
log

(
pν(c)

pν̃(c)
1

1+αµ(c)
α

1+α

)]
(19)

= max
ν

Epν(c) [log (pω(O|c))]−DKL (pν(c)‖pν̃(c))− αDKL (pν(c)‖µ(c)) . (20)

The last reformulation was possible since we can write pν(c) = pν(c)
1

1+α pν(c)
α

1+α . To proof
Theorem 1, we simply need to relate the quantity Epν(c) [log (pω(O|c))] to J(ν,ω). Using
f(R(τ, c)) = exp(R(τ, c)) and Jensens inequality, we can show that

log (pω(O|c)) = log

(∫
exp(R(τ, c))pω(τ |c)dτ

)
− log(Z) (21)

≥
∫
R(τ, c)pω(τ |c)dτ − log(Z) (22)

=

∫ ∑
t≥0

r(st,at)p0,c(s0)
∏
t≥0

p̄c(st+1|st,at)πω(at|st, c)dstdat − log(Z) (23)

=

∫ ∑
t≥0

γtr(st,at)p0,c(s0)
∏
t≥0

pc(st+1|st,at)πω(at|st, c)dstdat − log(Z)

(24)
= Ep0,c(s) [Vω(s, c)]− log(Z) (25)

14

The reformulation between lines (23) and (24) is possible because of the modified dynamics. The
chance of not transitioning into sT for t steps is given by γt. Since the agent recieves no re-
ward in sT , any terms of the form r(sT ,at) can be removed from the expectation in line (23).
Combining these two observations yields line (24). Given that the normalization constant Z is
constant across all contexts c, we can again remove it from the optimization of the reformulated
E-Step (Eq. 20). With that we see that when choosing f(R(τ, c)) = exp(R(τ, c)), it holds that
Epν(c) [log (pω(O|c))] ≥ J(ν,ω). Consequently, we optimize the E-Step using a lower bound by
optimizing Objective 13. Given that we can skip the M-Step due to restricting the form of q(c), we
see that we are indeed performing the steps of the EM algorithm outlined in Theorem 1.

A.2 Theorem 2

This theorem shows that the update rule for the context distribution, established by Klink et al. [12],
is also explained as applying EM to maximize pν,ω(O) w.r.t. ν. In this case, however, the variational
distribution is not restricted to a parametric form, requiring an explicit M-Step. Looking at the work
by Klink et al. [12], we see that their algorithm indeed performs an M-Step by fitting a parametric
model to weighted samples (which approximately represent q(c)).

Theorem 2. Choosing f(·)= exp (·/η), the (unrestricted) variational distribution after the reg-

ularized E-Step is given by q(c)∝pν(c) exp
(
Vω(c)+ηα(log(µ(c))−log(pν(c)))

η+ηα

)
, where Vω(c) is the

‘episodic value function’ as defined in [34].

Proof. We first note that, given that we are not restricting q(c) to any parametric form,
q(c) = 1

Z pν̃,ω(c|O)
1

1+αµ(c)
α

1+α holds after the E-Step. A reformulation of this probabilitty distri-
bution brings us closer to the desired result

1

Z
pν̃,ω(c|O)

1
1+αµ(c)

α
1+α (26)

∝pω(O|c)
1

1+α pν(c)
1

1+αµ(c)
α

1+α (27)

∝pν(c)pω(O|c)
1

1+αµ(c)
α

1+α pν(c)
−α
1+α (28)

∝pν(c) exp
(

log
(
pω(O|c)

1
1+αµ(c)

α
1+α pν(c)

−α
1+α

))
(29)

∝pν(c) exp

(
log (pω(O|c)) + α (log(µ(c))− log(pν(c)))

1 + α

)
(30)

To proof Theorem 2, we need to relate log (pω(O|c)) to the ‘episodic value function’
Vω(c) = η log

(∫
exp (R(τ |c)/η) pω(τ |c)dτ

)
as defined in [34]. By choosing the transformation

f(R(τ, c)) = exp
(
R(τ,c)
η

)
, it follows that

log(pω(O|c)) (31)

= log

(∫
p(O|τ, c)pω(τ |c)dτ

)
(32)

∝ log

(∫
exp

(
R(τ, c)

η

)
pω(τ |c)dτ

)
=

1

η
Vω(c). (33)

Inserting this result into Eq. (30) proofs the theorem.

B Experimental Details

In this section, we present details that could not be included in the main paper due to space limitations.
This includes parameters of the employed algorithms, additional details about the mechanics of the
environments as well as a qualitative discussion of the results.

The parameters of SPDL for different environments and RL algorithms are shown in Table 2. The
parameters Nα and ζ have the same meaning as in the main paper. The additional parameter nOFFSET
describes the number of RL algorithm iterations that take place before SPDL is allowed the change

15

Table 2: Hyperparameters for the SPDL algorithm per environment and RL algorithm. The asterisks
in the table mark the Ball-Catching experiments with an initialized context distribution.

Nα ζ nOFFSET nSTEP σLB DKLLB

POINT-MASS (TRPO) 70 1.6 5 2048 [0.2 0.1875 0.1] 8000
POINT-MASS (PPO) 10 1.4 5 2048 [0.2 0.1875 0.1] 8000
POINT-MASS (SAC) 50 1.2 5 2048 [0.2 0.1875 0.1] 8000
ANT (PPO) 15 0.4 40 81920 [1 0.5] 11000
BALL-CATCHING (TRPO) 70 0.4 5 5000 - -
BALL-CATCHING* (TRPO) 0 0.425 5 5000 - -
BALL-CATCHING (PPO) 50 0.45 5 5000 - -
BALL-CATCHING* (PPO) 0 0.45 5 5000 - -
BALL-CATCHING (SAC) 60 0.6 5 5000 - -
BALL-CATCHING* (SAC) 0 0.6 5 5000 - -

the context distribution. This parameter can be necessary if some iterations are required until
the approximated value function produces meaningful estimates of the expected value. In the ant
environment, we realized that the agent takes a certain amount of time (roughly 40 iterations) until
it manages to reach the wall. Only then, the difference in task difficulty becomes apparent. The
parameter nOFFSET allows to compensate for such task-specific details. This procedure corresponds to
providing parameters of a pre-trained policy as ω0 in the algorithm sketched in the main paper. We
selected the best ζ for every RL algorithm by a simple grid-search in an interval around a reasonably
working parameter that was found by simple trial and error. For the PointMass environment, we
only tuned the hyperparameters for SPDL in the experiment with a three-dimensional context space
and reused them for the two-dimensional context space. To conduct the experiments, we use the
implementation of ALP-GMM, GoalGAN and SPRL provided in the repositories accompanying the
papers [23, 27, 12].

For ALP-GMM we tuned the percentage of random samples drawn from the context space pRAND,
the number of policy rollouts between the update of the context distribution nROLLOUT as well as the
maximum buffer size of past trajectories to keep sBUFFER. For each environment and algorithm, we
did a grid-search over

(pRAND, nROLLOUT, sBUFFER) ∈ {0.1, 0.2, 0.3} × {50, 100, 200} × {500, 1000, 2000}.

For GoalGAN we tuned the amount of random noise that is added on top of each sample δNOISE, the
number of policy rollouts between the update of the context distribution nROLLOUT as well as the
percentage of samples drawn from the success buffer pSUCCESS. For each environment and algorithm,
we did a grid-search over

(δNOISE, nROLLOUT, pSUCCESS) ∈ {0.025, 0.05, 0.1} × {50, 100, 200} × {0.1, 0.2, 0.3}.
The results of the hyperparameter optimization for GoalGAN and ALP-GMM are shown in Table 3.

The similarity of our algorithm and SPRL – and since we could only apply it to one experiment
due to numerical reasons – allowed to start from the parameters of SPDL and obtain well-working
parameters by a few adjustments.

In the experiments, we found that restricting the standard deviation of the context distribution to stay
above a certain lower bound σLB helps to stabilize learning when generating curricula for narrow
target distributions with SPDL. Although such constraints could be included rigorously via constraints
on the distribution pν(c) in the E-Step, we accomplish this by just clipping the standard deviation
until the KL-Divergence w.r.t. the target distribution falls below a certain threshold DKLLB . This
technique was also employed by Klink et al. [12].

Opposed to the sketched algorithm in the main paper, we specify the number of steps nSTEP in the
environment instead of the number of trajectory rollouts between context distribution updates in our
implementation.

Since for all environments, both initial- and target distribution are Gaussians with independent noise
in each dimension, we specify them in Table 4 by providing their mean µ and the vector of standard
deviations for each dimension δ. When sampling from a Gaussian, the resulting context is clipped to
stay in the defined context space.

16

Table 3: Hyperparameters for the ALP-GMM and GoalGAN algorithm per environment and RL
algorithm. The abbreviation AG is used for ALP-GMM, while GG stands for GoalGAN.

pRAND nROLLOUTAG sBUFFER δNOISE nROLLOUTGG pSUCCESS

POINT-MASS 3D (TRPO) 0.1 100 1000 0.05 200 0.2
POINT-MASS 3D (PPO) 0.1 100 500 0.025 200 0.1
POINT-MASS 3D (SAC) 0.1 200 1000 0.1 100 0.1
POINT-MASS 2D (TRPO) 0.3 100 500 0.1 200 0.2
POINT-MASS 2D (PPO) 0.2 100 500 0.1 200 0.3
POINT-MASS 2D (SAC) 0.2 200 1000 0.025 50 0.2
ANT (PPO) 0.1 50 500 0.05 125 0.2
BALL-CATCHING (TRPO) 0.2 200 2000 0.1 200 0.3
BALL-CATCHING (PPO) 0.3 200 2000 0.1 200 0.3
BALL-CATCHING (SAC) 0.3 200 1000 0.1 200 0.3

If necessary, we tuned the hyperparameters of the RL algorithms by hand on easier versions of the
target task, not employing any Curriculum. The goal was to be as fair as possible by not optimizing
the RL algorithm for a specific curriculum. For the Ant and PointMass environment, this was done
by training on a wide gate positioned right in front of the agent. For the Ball-Catching environment,
this was done by training on a version of the environment with dense reward. For PPO, we use the
“PPO2” implementation of Stable-Baselines.

The experiments were conducted on a computer with an AMD Ryzen 9 3900X 12-Core Processor, an
Nvidia RTX 2080 graphics card and 64GB of RAM.

B.1 Point-Mass Environment

The state of this environment is comprised of the position and velocity of the point-mass s = [x ẋ y ẏ].
The actions correspond to the force applied in x- and y-dimension a = [Fx Fy]. The context encodes
position and width of the gate as well as the dynamic friction coefficient of the ground on which the
point mass slides c = [pg wg µk] ∈ [−4, 4]× [0.5, 8]× [0, 4] ⊂ R3. The dynamics of the system are
defined by ẋẍẏ

ÿ

 =

0 1 0 0
0 −µk 0 0
0 0 0 1
0 0 0 −µk

 s+

0 0
1 0
0 0
0 1

a.
The x- and y- position of the point mass is enforced to stay within the space [−4, 4]× [−4, 4]. The
gate is located at position [pg 0]. If the agent crosses the line y = 0, we check whether its x-position
is within the interval [pg − 0.5wg, pg + 0.5wg]. If this is not the case, we stop the episode as the
agent has crashed into the wall. Each episode is terminated after a maximum of 100 steps. The
reward function is given by

r(s,a) = exp (−0.6‖o− [x y]‖2) ,

where o = [0 −3], ‖ · ‖2 is the L2-Norm. The agent is always initialized at state s0 = [0 0 3 0].

For all RL algorithms, we use a discount factor of γ = 0.95 and represent policy and value function
by networks using 21 hidden layers with tanh activations. For TRPO and PPO, we take 2048 steps in
the environment between policy updates.

For TRPO we set the GAE parameter λ = 0.99, the maximum allowed KL-Divergence to 0.004 and
the value function step size av ≈ 0.24, leaving all other parameters to their implementation defaults.

For PPO we use GAE parameter λ = 0.99, an entropy coefficient of 0 and disable the clipping of the
value function objective. The number of optimization epochs is set to 8 and we use 32 mini-batches.
All other parameters are left to their implementation defaults.

For SAC, we use an experience-buffer of 10000 samples, leaving every other setting to the imple-
mentation default. Hence we use the soft Q-Updates and update the policy after every environment
step.

17

(a) Default (b) Random (c) ALP-GMM (d) GoalGAN (e) SPDL

(f) Default (g) Random (h) ALP-GMM (i) GoalGAN (j) SPDL

(k) Default (l) Random (m) ALP-GMM (n) GoalGAN (o) SPDL

Figure 5: Visualizations of policy rollouts in the Point-Mass Environment (three context dimensions)
with policies learned using different curricula and RL algorithms. Each rollout was generated using a
policy learned with a different seed. The first row shows results for TRPO, the second for PPO and
the third shows results for SAC.

For SPRL, we use Kα = 40, nOFFSET = 0, ζ = 2.0 for the 3D- and ζ = 1.5 and 2D case. We use the
same values for σLB and DKLLB as for SPDL (Table 2). Between updates of the episodic policy, we
do 25 policy rollouts and keep a buffer containing rollouts from the past 10 iterations, resulting in
250 samples for policy- and context distribution update. The linear policy over network weights is
initialized to a zero-mean Gaussian with unit variance. We use Polynomial features up to degree two
for approximating the value function during policy optimization. For the allowed KL-Divergence,
we observed best results when using ε = 0.5 for the weight computation of the samples, but using a
lower value of ε = 0.2 when fitting the parametric policy to these weighted samples. We suppose
that the higher value of ε during weight computation counteracts the effect of the buffer containing
policy samples from earlier iterations.

Looking at Figure 5, we can see that ALP-GMM allowed to learn policies that sometimes are able to
pass the gate. However, in other cases, the policies crashed the point mass into the wall. Opposed
to this, directly training on the target task led to policies that learned to steer the point mass very
close to the wall without crashing (which is unfortunately hard to see in the plot). Reinvestigating the
above reward function, this explains the lower reward of ALP-GMM, GoalGAN and the randomly
generated curriculum compared to directly learning on the target task, as a crash prevents the agent
from accumulating positive rewards over time.

B.2 Ant Environment

As mentioned in the main paper, we simulate the ant using the Isaac Gym simulator [54]. This allows
to speed up training time by parallelizing the simulation of policy rollouts on the graphics card.
Since the Stable-Baselines implementation of TRPO and SAC do not support the use of vectorized

18

0 500
Timestep

0

5

Po
si

tio
n

(a) Default

0 500
Timestep

0

5

Po
si

tio
n

(b) Random

0 500
Timestep

0

5

Po
si

tio
n

(c) ALP-GMM

0 500
Timestep

0

5

Po
si

tio
n

(d) GoalGAN

0 500
Timestep

0

5

Po
si

tio
n

(e) SPDL

Figure 6: Visualizations of the x-position during policy rollouts in the Ant Environment with policies
learned using different curricula. The blue lines correspond to 200 individual trajectories and the
thick black line shows the median over these individual trajectories. The trajectories were generated
from 20 algorithms runs, were each final policy was used to generate 10 trajectories.

environments, it is hard to combine Isaac Gym with these algorithms. Because of this reason, we
decided not to run experiments with TRPO and SAC in the Ant environment.

The state s ∈ R29 is defined to be the 3D-position of the ant’s body, its angular and linear velocity
as well as positions and velocities of the 8 joints of the ant. An action a ∈ R8 is defined by the 8
torques that are applied to the ant’s joints.

The context c = [pg wg] ∈ [−10, 10]× [3, 13] ⊂ R2 defines, just as in the Point-Mass environment,
the position and width of the gate that the Ant needs to pass.

The reward function of the environment is computed based on the x-position of the ant’s center of
mass cx in the following way

r(s,a) = 1 + 5 exp
(
−0.5 min(0, cx − 4.5)2

)
− 0.3‖a‖22.

The constant 1 term was taken from the OpenAI Gym implementation to encourage the survival of
the ant [53]. Compared to the OpenAI Gym environment, we set the armature value of the joints from
1 to 0 and also decrease the maximum torque from 150Nm to 20Nm, since the values from OpenAI
Gym resulted in unrealistic movement behavior in combination with Isaac Gym. Nonetheless, these
changes did not result in a qualitative change in the algorithm performances.

With the wall being located at position x=3, the agent needs to pass it in order to obtain the full
environment reward by ensuring that cx >= 4.5.

The policy and value function are represented by neural networks with two hidden layers of 64
neurons each and tanh activation functions. We use a discount factor γ = 0.995 for all algorithms,
which can be explained due to the long time horizons of 750 steps. We take 81920 steps in the
environment between a policy update. This was significantly sped-up by the use of the Isaac Gym
simulator, which allowed to simulate 40 environments in parallel on a single GPU.

For PPO, we use an entropy coefficient of 0 and disable the clipping of the value function objective.
All other parameters are left to their implementation defaults. We disable the entropy coefficient as
we observed that for the Ant environment, PPO still tends to keep around 10 − 15% of its initial
additive noise even during late iterations.

Investigating Figure 6, we see that both SPDL and GoalGAN learn policies that allow to pass the gate.
However, the policies learned with SPDL seem to be more reliable compared to the ones learned with
GoalGAN. As mentioned in the main paper, ALP-GMM and a random curriculum also learn policies

19

that navigate the ant towards the goal in order to pass it. However, the behavior is less directed and
less reliable. Interestingly, directly learning on the target task results in a policy that tends to not
move in order to avoid action penalties. Looking at the main paper, we see that this results in a similar
reward compared to the inefficient policies learned with ALP-GMM and a random curriculum.

B.3 Ball-Catching Environment

In the final environment, the robot is controlled in joint space via the desired position for 5 of the 7
joints. We only control a subspace of all available joints, since it is not necessary for the robot to
leave the ”catching” plane (defined by x = 0) that is intersected by each ball. The actions a ∈ R5

are defined as the displacement of the current desired joint position. The state s ∈ R21 consists
of the positions and velocities of the controlled joints, their current desired positions, the current
three-dimensional ball position and its linear velocity.

As previously mentioned, the reward function is sparse,

r(s,a) = 0.275− 0.005‖a‖22 +

{
50 + 25(ns · vb)5, if ball catched
0, else

,

only giving a meaningful reward when catching the ball and otherwise just a slight penalty on the
actions to avoid unnecessary movements. In the above definition, ns is a normal vector of the end
effector surface and vb is the linear velocity of the ball. This additional term is used to encourage the
robot to align its end effector with the curve of the ball. If the end effector is e.g. a net (as assumed
for our experiment), the normal is chosen such that aligning it with the ball maximizes the opening
through which the ball can enter the net.

The context c = [φ, r, dx] ∈ [0.125π, 0.5π] × [0.6, 1.1] × [0.75, 4] ⊂ R3 controls the target ball
position in the catching plane, i.e.

pdes = [0 −r cos(φ) 0.75 + r sin(φ)].

Furthermore, the context determines the distance in x-dimension from which the ball is thrown

pinit = [dx dy dz],

where dy ∼ U(−0.75,−0.65) and dz ∼ U(0.8, 1.8) and U represents the uniform distribution. The
initial velocity is then computed using simple projectile motion formulas by requiring the ball to
reach pdes at time t = 0.5 + 0.05dx. As we can see, the context implicitly controls the initial state of
the environment.

The policy and value function networks for the RL algorithms have three hidden layers with 64
neurons each and tanh activation functions. We use a discount factor of γ = 0.995. The policy
updates in TRPO and PPO are done after 5000 environment steps.

For SAC, a replay buffer size of 100, 000 is used. Due to the sparsity of the reward, we increase the
batch size to 512. Learning with SAC starts after 1000 environment steps. All other parameters are
left to their implementation defaults.

For TRPO we set the GAE parameter λ = 0.95, leaving all other parameters to their implementation
defaults.

For PPO we use a GAE parameter λ = 0.95, 10 optimization epochs, 25 mini-batches per epoch,
an entropy coefficient of 0 and disable the clipping of the value function objective. The remaining
parameters are left to their implementation defaults.

Figure 7 visualizes the catching success rates of the learned policies. As can be seen, the performance
of the policies learned with the different RL algorithms achieve comparable catching performance.

Table 4: Mean and standard deviation of target and initial distributions per environment.

µINIT δ INIT µTARGET δTARGET

POINT-MASS [0 4.25 2] [2 1.875 1] [2.5 0.5 0] [0.004 0.00375 0.002]
ANT [0 8] [3.2 1.6] [−8 3] [0.01 0.005]
BALL-CATCHING [0.68 0.9 0.85] [0.03 0.03 0.3] [1.06 0.85 2.375] [0.8 0.38 1]

20

Default Default* GoalGAN* Goal GAN ALP-GMM SPDL* SPDL
0.00

0.25

0.50

0.75

C
at

ch
in

g
R

at
e

(a) SAC

Default Default* GoalGAN* Goal GAN ALP-GMM SPDL* SPDL
0.00

0.25

0.50

0.75

C
at

ch
in

g
R

at
e

(b) TRPO

Default Default* GoalGAN* Goal GAN ALP-GMM SPDL* SPDL
0.00

0.25

0.50

0.75

C
at

ch
in

g
R

at
e

(c) PPO

Figure 7: Mean Catching Rate of the final policies learned with different curricula and RL algorithms
on the Ball Catching environment. The mean is computed from 20 algorithm runs with different seeds.
For each run, the success rate is computed from 200 ball-throws. The bars visualize the estimated
standard error.

Interestingly, SAC performs comparable in terms of catching performance, although the average
reward of the final policies learned with SAC is lower. This is to be credited to excessive movement
and/or bad alignment of the end effector with the velocity vector of the ball.

21

	Introduction
	Related Work
	Preliminaries
	Self-Paced Deep Reinforcement Learning
	Experiments
	Point Mass Environment
	Ant Environment
	Ball-Catching Environment

	Conclusion
	Proofs
	Theorem 1
	Theorem 2

	Experimental Details
	Point-Mass Environment
	Ant Environment
	Ball-Catching Environment

