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Abstract— The ability of Gaussian processes (GPs) to predict
the behavior of dynamical systems as a more sample-efficient
alternative to parametric models seems promising for real-
world robotics research. However, the computational complexity
of GPs has made policy search a highly time and memory
consuming process that has not been able to scale to larger
problems. In this work, we develop a policy optimization
method by leveraging fast predictive sampling methods to
process batches of trajectories in every forward pass, and
compute gradient updates over policy parameters by automatic
differentiation of Monte Carlo evaluations, all on GPU. We
demonstrate the effectiveness of our approach in training
policies on a set of reference-tracking control experiments with
a heavy-duty machine. Benchmark results show a significant
speedup over exact methods and showcase the scalability of
our method to larger policy networks, longer horizons, and up
to thousands of trajectories with a sublinear drop in speed.

I. INTRODUCTION

Recent advances in computational algorithms in Machine
Learning, coupled with the increase in computing power have
enabled researchers to take a modern approach to policy
optimization. Reinforcement Learning (RL) is a popular
method for optimizing policies for many complex tasks,
by letting the algorithms interact with any evolving system
and converge to a policy that generates the actions which
maximize a cumulative reward for the task. Research in
accelerating RL by leveraging multi-core architectures and
hardware-accelerations provided by modern processors [1]–
[4] has contributed significantly in shortening the training
times.

For a simulated environment, such as a dynamical sys-
tem defined by a system of differential equations, an RL
algorithm can effectively query the simulator many times,
typically faster than it would take to do with a real system,
and optimize the policy based on the collected trajectories
[5]–[7]. Simulated models often deviate from the real system
dynamics, so the transferability of a policy that was trained
in simulation to the real machine is a serious concern [8]. On
the other hand, it is usually impractical and unsafe to run a
real system for days or even months to collect training data to
converge to a suitable solution. Among different techniques,
model-based RL [9]–[12] offers a more feasible alternative,
to build a surrogate model from the machine response, and
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Fig. 1. The hydraulics of heavy-duty machines have complex dynamics
which are difficult to model, and their lengthy maneuvers aggravate the size
of dataset needed to predict their behavior. While previous methods with
Gaussian processes crash for being out of memory or take hours to reach a
lower performing single-goal solution (Section IV-A), our method BAGEL
can train a policy in under 30 seconds on a laptop, which will drive the
boom actuator of this machine accurately to any commanded position.

optimize the control policies based on the obtained model.
The advantage of this approach is clear: querying a fitted
model is in many instances faster (and safer) than actuating
the real system. Policy optimization works best if the model
imitates closely the behavior of the real system, and since it
is generally desired to learn while having as little interaction
with the real machine as possible, many have used Gaussian
Processes (GPs) [13] to predict the response of mechanical
systems [4], [14]–[17].

Most RL algorithms that have utilized GPs in the past
have been quite successful in solving robotics tasks [4],
[18], having interacted with the real machine for only
a limited time. While GP regression is a very effective
method, the computational bottlenecks that accompany the
previous inference methods (Section II) have made policy
optimization a time and memory consuming process that
scales worse with the size of training data. This has limited
the research to simpler tasks, such as going from only
one state to one goal using smaller datasets that can never
extend beyond computational constraints. These challenges
have to addressed for real-world applications (e.g. heavy-
duty machines) where the maneuvers are slower and lots
of training points constitute a well-descriptive model of the
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system for policy optimization. Fortunately, recent advances
in GP inference methods have lifted the aforementioned
constraints to a significant extent, providing faster and more
efficient sampling (Section II).
Contributions. In this paper, we take a gradient-based opti-
mization approach to obtaining a goal-conditioned nonlinear
feedback policy for a dynamical system. In particular, we
utilize GPs to represent a surrogate model of a heavy-duty
machine. Then we use the model predictions to estimate the
rewards and update the policy to maximize rewards. We build
on top of previous methods in several directions:

1) Fast Inference. At the core of our algorithm we utilize
the fastest method for GP inference [19], [20] which is
insensitive to the size of training data (Section II).

2) GPU-Acceleration. By mapping out the algorithm to
process batches of trajectories in every pass (Section
III-B), we integrate vectorized Monte Carlo evaluations,
GP inference, and automatic differentiation (autodiff) to
run simulations and optimizations fully on GPU.

3) Flexibility. We use the algorithm for training general-
ized goal-conditioned policies in a timely fashion, and
demonstrate control on a heavy-duty machine (Sections
(IV-A-IV-B)).

4) Scalability. We provide benchmarks on the performance
and learning speed of our algorithm and how it can scale
to larger policies, longer horizon of predictions, and up
to thousands of trajectories (Section IV-C).

These provide us with a fast and practical framework
for model-based optimization, accelerating learning while
achieving good prediction accuracy that comes from the
latest methods in GP inference.

The structure of this paper is as follows: Section II
overviews the related work and advances in algorithms,
Section III details our algorithm, Section IV presents the
results and benchmarks of our experiments and Section V
concludes the paper.

II. RELATED WORK

In real-world robotics applications, a key objective is
to infer the policy with the least amount of interaction
with the real machine, which is possible through imposing
prior knowledge as well as incorporating models for system
dynamics, rewards, and policy (for a detailed review of policy
optimization in robotics, refer to [21]). This is especially im-
portant in the field of heavy-duty machines, where dynamics
are complex, interaction is slow and time-consuming, and
tolerance is tight for unsafe exploration. Recently, there has
been a surge in applying learning methods to heavy-duty
machines [6], [7], [22]–[25] to discover automated, energy-
efficient [26] solutions for complex hydraulic systems.

Gaussian Processes [13] are widely popular for modeling
systems as accurately as possible where limited data exists.
Having only a few hyperparameters, GPs are easy to tune,
they provide the estimate of uncertainty over predictions, and
can even be used to model rewards for a task [4]. Once a GP
model is formed, it can be plugged into a planning algorithm
to perform predictive control, i.e., to compute the sequence

of actions which maximize the expected return over possi-
ble trajectories [5], [27]. A notable drawback in predictive
control is the computational burden of online optimization
which grows with the size of state and action spaces. An
alternative approach is to optimize a parameterized policy
offline [4], [14] and repeat the data collection and learning
loop until the task is solved [9], [11]. PILCO (probabilistic
inference for learning control) [14] is one notable method
among sample-efficient control approaches that uses GPs and
explicitly propagates the uncertainty of the models. But doing
so comes at the expense of significant O(n3) complexity in
time and O(n2) in memory for n training points. To speed up
policy optimization, BLACK-DROPS [4] takes a black-box
approach using the covariance matrix adaptation evolution
strategy (CMA-ES), which enables the use of multiple cpu
cores. Gradient-free optimization is a good approach for
escaping local optima, but is in general slower on a single-
core because it takes away a key feature, i.e. the gradient,
which is in many instances computable. Since both PILCO
and BLACK-DROPS use exact GP inference which grows
cubically in computational complexity, and only PILCO can
extend to GPU implementations, we choose PILCO as a
baseline method in our benchmarks.

Using exact GPs in model-based optimization does not
imply error-free uncertainty propagation through the GP
models. All works in learning with GPs use some form of
approximation, in [14] the only tractable way to get the
distribution of next states as a Gaussian is to approximate
by matching moments. Additional approximations tackle the
computational burden associated with the growing number
of training points, for instance, sparse GP approximations
[28]–[30]. In [18] an approximate inference by linearizing
the posterior mean of GP was shown to have less compu-
tational demand, yet slightly underperforming compared to
moment matching. Pathwise conditioning [31] is a recent
approach that offers batch rollouts with sparse GPs, but is
not studied in detail in the context of computation speed
in RL. Moreover, all of these methods contribute to easing
up the computations, but the degree of approximation and
dependence on the size of training data are important factors
that influence policy optimization on larger datasets and over
longer-term predictions.

In spite of the computational constraints of GP inference
that had existed for long, recent advances in algorithms
have achieved significant speed ups with near-exact accuracy.
The Kernel Interpolation for Scalable Structured GPs (KISS-
GP) [32] is an inducing point method that precomputes
a vector dependent on training data, allowing calculations
of predictive mean by sparse interpolation in constant time
(i.e., independent of number of training data). This was later
extended to rapid computation of predictive covariances in
constant time and sampling that is only linearly dependent
on the number of test points in LanczOs Variance Estimates
(LOVE) [19], achieving thousands of times faster inference
than previous methods. These are implemented through
efficient matrix-vector multiplication (MVM) routines in
GPyTorch [20], which we will utilize for the predictive



models. The advances in algorithms, coupled with memory
efficient implementations of kernel operations [33], [34] and
multi-GPU acceleration have enabled querying GPs up to
millions [35] and billions [36] of training points.

III. METHOD

Our approach to policy optimization is based on the
following objectives:
• Having limited interaction with the real system
• Solid convergence to high performing policies
• Fast optimization, possibility to scale with hardware
• Flexible implementation, generalized training

In this section, we will show how different elements come
together in our algorithm to satisfy the above objectives.
In brief, we will use a learned dynamics model from the
machine response using Gaussian processes (Section III-A)
to optimize the policy based on the model as a proxy to
the dynamics of the real system to address efficiency in
interaction. To achieve the second objective, we propose
the optimization objective as Monte Carlo evaluations over
batches of trajectories for better estimate of gradient, and
later confirm its effectiveness in the results of Section IV-A.
The third objective is achieved by a) using fast predictive GP
sampling [19] (see Section II) and b) unifying the algorithm
to propagate and autodiff batches of states and actions (Sec-
tion III-B) to leverage GPU-acceleration, as benchmarked in
Section IV-C. Generalization to different problems is made
possible through training over varying states and goals in
batches, which can be sampled by any distribution, such that
the policy maximizes the rewards over all states and goals.

A. Probabilistic Dynamics Model using GPs

Model-based policy optimization [9] is performed through
approximating the dynamics using a model that is inferred
from a dataset of transitions from the real system response.
Gaussian processes (GPs) [13] are a class of probabilistic
regression models that work for continuous state-action
systems, and have been shown to be more sample efficient
over many methods [18], [21]. GPs provide the amount of
uncertainty in predictions, which can be incorporated into
making policies more robust. Consider a system with states
and actions x ∈ Rp,u ∈ Rq whose dynamics is denoted by
a transition

xk+1 = fD(xk,uk) (1)

A Gaussian process (GP) defines a distribution over functions
f̂(x) ∼ GP(µ, k(xi,xj)). Given a mean µ : Rd → R and
kernel function k : Rd × Rd → R, each mth-GP can model
the one-step forward dynamics of one output ymk = xmk+1

[37] or the discrete difference ymk = ∆xmk = xmk+1 − xmk
[14], of the states of the system m = {1, ..., d}. To make
notation simple, we will omit the superscript m for each
output function and overview the inference procedure which
is similar for each GP. To make predictions using the GPs,
the concatenated vector of states and actions (xk,uk) ∈ Rd
is fed as training inputs and yk as the corresponding training
labels for all training points (subscripted with k = {1, ..., n})

in a dataset of transitions (X,y) = D ∈ Rn×d. Given a test
point x∗, the predictive posterior p(f̂(x∗)|X,y) is Gaussian
distributed with mean and variance

E
[
f̂(x∗)|X,y

]
= µ(x∗) + kTXx∗K̂−1

XX
y (2)

var
[
f̂(x∗)|X,y

]
= k(x∗,x∗)− kTXx∗K̂−1

XX
kXx∗ (3)

where K̂
XX

= (K
XX

+ σ2
nI), K

XX
is the kernel matrix

evaluated at all pairs, σ2
n is observation noise, and kXx∗ is

a vector of the kernel evaluated between test points x∗ and
the training points X . The squared exponential (SE) kernel
with automatic relevance determination is one that is most
frequently used in robotics

k(xi,xj) = α2exp
[
−1

2
(xi − xj)TΛ(xi − xj)

]
(4)

where Λ is a diagonal matrix of length scales {l1, ..., ld}
for each input dimension and α relates to function variance.
The collective hyperparameters of the GPs φ = [Λ, α, σn]
are learned by maximizing the log marginal likelihood [20]

LG = log p(y|X,φ) ∝ −yT K̂−1φ,XX
y − log|K̂φ,XX

| (5)

∂LG
∂φ
∝ yT K̂φ,XX

∂K̂−1φ,XX

∂φ
K̂φ,XX

y − tr{K̂φ,XX

∂K̂φ,XX

∂φ
}

(6)

In our algorithm, we use Lanczos variance estimates (LOVE)
[19] implemented in GPyTorch [20] for sampling from the
distribution of next states. Due to limited space, we refer
to Section II for an overview, and to [19], [20] for details
of these methods and implementation. Moreover, we focus
on providing the benchmarks related to the performance of
policy and optimization process that includes autodiff opera-
tions, whereas the speedups of these methods for inference-
only have been documented in [19], [20], [35].

B. Policy Evaluation & Update

The RL objective for a system whose dynamics is defined
by (1) is to find a policy π∗θ that maximizes the expected
return of the closed-loop system response up to horizon H

E [J(θ)] =

H∑
k=0

r(x
k
,xg) (7)

where r(x,xg) provides an immediate reward for being in
state x depending on the goal state xg . Throughout our
experiments, we use the cost function used in [14]

r(x,xg) = exp
(
− 1

2σ2
r

(x− xg)TQ(x− xg)
)

(8)

where Q and σr are weighting and width-adjusting parame-
ters. At every forward pass, trajectories are realized accord-
ing to the actions provided by the policy uk = πθ(xk,xg)
and GP models

f̂D(xk,uk) ∼ N (µ(x∗k),Σ(x∗k)) (9)

with the moments defined in (2)-(3). In our experiments
we consider feedforward Neural Network (NN) policies



Algorithm 1: Policy optimization via Batch Auto-
matic differentiation of Gaussian process Evaluations
using Lanczos variance estimates (BAGEL)

1 Initialization
2 Parameterized policy πθ , sample parameters according

to [38] or simply θ ∼ N (0, I)
3 Dataset of real transitions D - load or collect by

applying actions manually or randomly
4 Explicit reward function r or (optional) collect a

dataset DR
5 for n = 1→ Ninteractions do
6 Learn GP transition dynamics using D (6)
7 Learn GP reward model using DR (Optional)
8 for i = 1→ max step until convergance do
9 Sample batch of initial states Ŝb×d0 . Forward pass

10 Initialize return Ĝ← r(Ŝ0,G)
11 for k = 0→ Horizon-1 do
12 Uk ← πθ(Ŝk,G)
13 Sample Ŝk+1 ∼ f̂D(Ŝk, Uk) (9)
14 Ĝ = Ĝ+ r(Ŝk+1,G)
15 end for
16 Loss L ← − 1

b
[Sum Reduce(Ĝ)]

17 Compute ∇θL via Autodiff . Backward pass
18 Update θ via gradient descent
19 end for
20 Collect more data (e.g. using πθ) and update D (DR)
21 end for

with deterministic outputs and exploit the gradient of policy
parameters that become available when system transitions are
in GP form with parameterized rewards and policies [14].
Instead of analytically derived gradients, we use autodiff in
PyTorch [39] for a straightforward and flexible implemen-
tation. To obtain a good estimate of the objective function
(and the gradients), Monte Carlo sampling requires many
trajectories to be unrolled. Therefore, the objective function
in a forward pass over b trajectories is obtained by

E [G(θ)] =
1

b

b∑
τ=0

H∑
k=1

r̂(x̂
k−1

+ f̂D(x̂k−1,uk−1),xg) (10)

where x̂ denotes the predicted state using the surrogate
models. Furthermore, we reformulate the objective function
to exploit batch querying GPs for the distribution of next
states

E [G
B

(θ)] =
1

b

H∑
k=1

r̂(Ŝ
k−1

+ f̂D(Ŝk−1, πθ(Ŝk−1,G)),G)

(11)
by passing states and goals in batches {S,G}. Finally,
the gradient of objective function ∇θL can be computed
by reducing (11) by summation and autodiff to update
the policy parameters, for which we will use Adam [40].
Algorithm 1 summarizes our policy optimization procedure
termed BAGEL. This implementation is simple yet flexible
for different formulations. For instance, the initial and goal
states {S,G} at every iteration can be fixed for training as in
[4], [14] which we will demonstrate in our first experiment
in Section IV-A, or they can be sampled according to a

distribution (Section IV-B) for a generalized policy. More
importantly, all operations in Algorithm 1 can be performed
on GPU, for which we will provide detailed speedups
over CPU (Section IV-A) and scalability to thousands of
trajectories (Section IV-C).

IV. RESULTS & DISCUSSION

A. Experiment 1: Single-goal Controller

In our first experiment, we formulate the task as driving the
hydraulic boom of the machine depicted in Fig. 1 from a low
angle to the horizontal pose (i.e. 0◦). To keep the formulation
simple and provide a comparison between BAGEL and exact
methods, we consider the kernel in (4) for the GP models.
We use a batch size of 100 trajectories, horizon of 300 steps
and choose two states for GPs: the angle ϕ and angular rate
ϕ̇ of the hydraulic boom, which are noisy observations from
the real machine. The batch of initial states Ŝ ∈ R100×2

is initialized with all repeating entries of the current state
of the machine i.e. Ŝk = [ϕ̂0, ˆ̇ϕ0], normalized according to
the mean µX and standard deviation σX of the data in D.
For the reward function, we use r([ϕ̂, ˆ̇ϕ], −µX

σX
) in (8) with

Q = diag{10, 0.1} and for the policy we use a NN with
two hidden layers of 8 nodes each (referred to as [8,8] in
Fig. 5) whose outputs are bounded in the range [-1,1] using
a saturating function.

To provide a good comparison between algorithms, we
train the GPs on a dataset D of previously collected tran-
sitions from manually lowering and raising the boom for
110 seconds. With a sampling rate of 0.05s, there are
n = 2200 training points in D. We use the same GPs
for all algorithms and do not iterate for collecting more
data, as we consider the GPs to be sufficiently descriptive
of the dynamics and are only interested in comparing the
optimization performance under similar circumstances. Fig. 2
summarizes the optimization time of different methods. As
can be seen in the results, both the GPU and CPU versions of
BAGEL with batch-size=100 achieve the highest reward in
all trials, with GPU converging 5x faster than CPU since
CPUs fall short in batch processing, motivating the need
for GPU-acceleration. To support the effectiveness of batch
evaluation in BAGEL, optimization is also shown over a
single trajectory per pass under CPU-Seq, as if batch-size=1.
Here, the single CPU core can perform sequential updates
much faster than a GPU (each update illustrated with a
marker), achieving a very high rate of updates yet falling
short in achieving better quality of updates over GPU-Batch.
This is because one rollout is not fully descriptive of the
uncertainty of the models, the estimate of gradient is noisy
and the optimization can eventually get stuck in local optima.
The learning rate used for all trainings is 10−2.

Fig. 3 presents the results of applying the NN controller
trained by BAGEL to the machine shown in Fig. 1. This
successfully drives the boom to the commanded position at
0◦. The hydraulic actuator is fast reacting and has an intrinsic
deadband, both of these features contribute to keeping the
response steady during motion and without jitter at goal
point. Because of the choice of state-dependent reward
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Fig. 2. Policy optimization progress across GPU- and CPU-accelerated
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one trajectory in every pass. Mean and 95% confidence bounds over 16 trials
are shown for each method. In this experiment with n = 2200 training data,
exact methods frequently crash due to memory overflow. Computations are
made using a laptop Intel 10750H CPU and NVIDIA Quadro T2000 GPU.

function (8), the solution resembles bang-bang control [41].
Additional insights are also made possible by plotting the
rollouts of BAGEL during early, middle, and late stages of
training in Fig. 3. Given the batch evaluation feature of the
algorithm, we can see that the policy reduces the variance
over all trajectories.

To showcase the performance gain of BAGEL as a result
of using scalable GP querying [20], we consider two other
algorithms. In the first one, autodiff on exact GPs, we have
modified the querying part in BAGEL-CPU-Seq to sample
directly from cholesky decomposition methods. For autodiff
on PILCO, a modified version of [42] is used. As we have
observed during the optimization process illustrated in Fig. 2,
one major issue that contributes to the drop of performance
in both methods is the high demand of memory that causes
constant swap between RAM and disk. To alleviate this issue
to some extent, we let these methods train for several hours,
yet both approaches are much slower in computation and
the actuation of the policy (Fig. 3) is quite slow for the
machine. Moreover, the optimization benchmarks exclude the
time it takes to learn the GP hyperparameters (6), around
∼20s performed once for all algorithms, and the one-time
caching operation required for BAGEL’s fast predictions [19]
takes ∼0.6s.

B. Experiment 2: Goal-conditioned Policy

In our second experiment, we show the flexibility of our
method in training a generalized, goal-conditioned policy
πθ(x,xg) that takes a varying goal state as additional input.
Here, the reward function in (8) is now r([ϕ̂, ˆ̇ϕ], [ϕ̂g, ˆ̇ϕg]).
The batch of S,G for the training are sampled from a uniform
distribution in their respective bounds from D. This will
result in the objective of maximizing rewards from any state
to any goal in admissible space. Fig. 4 demonstrates the
thorough process of collecting data by first manually con-
trolling the machine, then sending step reference commands
to the goal-conditioned controller to follow. The rollouts of
the closed-loop system are drawn with thin lines, where all
realizations are controlled by the policy.
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Fig. 3. Real experiment results on a hydraulic boom using BAGEL. The
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trajectories in a forward pass. BAGEL is trained for ∼30s (20 iters) whereas
AutoDiff+ExactGPs is given 5 hours for training (100 iters).

C. Scalability

In Section IV-A, it was demonstrated that policy opti-
mization becomes very demanding on memory with exact
methods. This was expected to some extent since exact GP
inference comes with large memory requirements. However,
it is the integration of autodiff that demands more memory
than what is normally required for GP inference to store
gradients. Although BAGEL was well below the 4GB mem-
ory requirements of a laptop GPU during our experiments in
Sections (IV-A-IV-B), we are interested in seeing its potential
to scale to larger problems. Therefore, in this section we
study the optimization speed and required memory with
respect to three main hyperparameters that are the most
important contributing factors to scaling: batch size BS, size
of policy parameters θ, and horizon H .

Fig. 5 summarizes the results of the analysis. Considering
as a baseline the hyperparameters in our previous experi-
ments (Sections IV-A-IV-B), we begin by scaling the number
of trajectories processed in every batch by a factor of 10 and
using a larger policy. As can be seen in Fig. 5-(b), there is
almost no drop in performance of BAGEL in the GPyTorch
[20] implementation, as long as the memory demand for
autodiff is provided. To scale beyond the GPU memory
limits, there are a variety of methods [43] to reconstruct
BAGEL into a memory-efficient implementation. One can
process batches by breaking them into smaller batches or
checkpoint gradients for larger policies [44] at the expense of
additional forward pass, in essence trading off more compute
for less memory. For our benchmarks, we choose KeOps
[33] which is easy to integrate with BAGEL and does not
introduce additional hyperparameters. KeOps automatically
builds memory-management on the kernel operations of
BAGEL, including autodiff, allowing it to scale the succeed-
ing configurations shown in Fig. 5 up to a horizon of 1K
steps, larger policy, and batch size up to 10K. From the
benchmarks and the structure of BAGEL in Algorithm 1,
it can be seen that scaling with respect to batch size and
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Fig. 5. Benchmarks of (a) memory and (b) speed of BAGEL implemen-
tations for different configurations. BS: Batch Size, H: horizon of forward
pass, NN: Neural Network policy layers. Hatched bars mark configurations
that were unable to run on GPyTorch-only implementation due to out of
memory error. The benchmarks use a NVIDIA Tesla V100 GPU from CSC
IT Center for Science Finland.

size of policy even after plugging in memory-efficiency is
sublinear, whereas scaling with respect to H is near-linear
since it increases the number of calls in the forward pass.
The evaluations are average over 100 iterations, and omit the
one-time compilation delay of KeOps functions. Note that a
better utilization of memory in the last configuration in Fig. 5
is faster than the previous counterpart with smaller policy.

V. CONCLUDING REMARKS

Not so long ago it seemed that inference and learning
with Gaussian processes (GPs) was greatly impaired by com-
putational constraints. However, recent algorithmic break-
throughs have not only overcome those challenges, but have
accelerated inference by leveraging modern hardware. We
re-examined controller learning using the latest techniques
in GP prediction, optimization, and memory efficiency, and
unified them into BAGEL. Throughout our experiments, we
showcased how BAGEL can train policies for real machine
control to track various reference trajectories in a timely
manner, as well as its ability to scale up to larger problems
and the flexibility to obtain generalized policies.

Nevertheless, BAGEL is by no means flawless. The ac-
curacy of model affects the quality of policy, and BAGEL
naturally inherits the shortcomings of its underlying methods,
such as limitations to scale to high-dimensional problems.
There are many underlying components influencing the per-
formance of BAGEL, so a projection to more dimensions,
complex models and different tasks can only be made
through problem-specific feasibility studies. Notwithstand-
ing, BAGEL is a practical and flexible framework that can
integrate well with a variety of learning techniques and
extend to larger scale problems for future research.
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