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Abstract—This paper presents a robust machine learning frame-
work for modeling and control of hydraulic actuators. We identify
several important challenges concerning learning accurate models
of the dynamics for real machines, including noise and uncertainty
in state measurements, nonlinear effects, input delays, and data-
efficiency. In particular, we propose a dual-Gaussian process (GP)
model architecture to learn a surrogate dynamics model of the
actuator, and showcase the accuracy of predictions against the
piecewise and neural network models that have been widely used
in the literature. In addition, we provide robust techniques for
learning neural network inverse models and controllers by batch
GP inference in an automated, seamless and computationally fast
manner. Finally, we demonstrate the performance of the trained
controllers in real-world feedforward and tracking control appli-
cations.

Index Terms—Hydraulic actuators, machine learning for robot
control, model learning for control.

I. INTRODUCTION

A LL real-world mechanical systems that provide a means to
automation today are powered by integrated controllers.

These controllers are carefully designed and fine-tuned to pro-
vide the best possible performance for the intended application,
and their development follows a conventional process. First, the
system dynamics are modelled, wherein prior knowledge and
general understanding of the physics of the underlying process
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Fig. 1. Hydraulic actuators that drive heavy-duty machines have complex
dynamics and are difficult to model from real data. We present an automated
framework for learning a predictive model directly from noisy state measure-
ments, and demonstrate techniques to use the model for trajectory tracking
control and to eliminate deadband, asymmetric, and off-centered operation by
compensating for nonlinearities. Our approach outperforms parametric models,
and is tested across limited-resolution angle sensors in revolute joints ©1 -©2 -©3
to high-resolution measurements in prismatic links ©4 .

culminate in a set of mathematical equations. The resulting
model is often deterministic, in which a set of parameters
within admissible ranges can describe the behavior of individual
systems of the same type collectively. The next step is to identify
the best set of parameters for each system, since two systems
are never completely identical in the real-world sense, e.g. due
to subtle differences in the material properties or manufacturing
tolerances. Identifying the parameters that match the model to
the real system accurately is a complex process, it requires design
of experiments, controlled data collection procedures, data fil-
tering and feature extraction, and iterative optimization. Finally,
the control system is designed by employing a suitable approach
among the rich literature of well-developed methodologies.

Despite its long history of developments and improvements,
this classical approach to model-based control is not devoid
of pitfalls and challenges in the case of hydraulic actuators in
heavy-duty machines. Most system identification approaches in
modelling the dynamics of hydraulic actuators assume either a
physical model with few parameters [1], [2] that are unable to
capture complex nonlinear effects and may require excessive
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controller tuning, or neural networks (NNs) [3]–[7] that contain
many parameters, yet require lots of data for training. On the
other hand, the least-squares objective of optimization does not
explicitly account for measurement uncertainties, e.g. sensor
noise, varying input delays, vibrations, transient dynamics, and
other nonlinear effects, which are always present in the real
system. Consequently, for physical models [8], [9], measure-
ment data have to be smoothed prior to optimizing the models,
and experiments need to be conducted under considerations
that facilitate filtering and identification, e.g., steadily increas-
ing/decreasing inputs [1], [9]–[11]. Closed-loop control can
remedy model errors to some extent, but it requires accurate
sensory feedback which may not be accessible in all actuator
types.

One more important challenge in model learning and control
of real machines is the amount of data required for accurate
system identification. Machines and their actuators come in
different sizes and characteristics, so it is difficult, if not virtually
impossible, to spend hours or days experimenting with each indi-
vidual machine to collect sufficient data for learning a dynamics
model, and to do so within the safety limits. This is contrary to
studies in simulation [12], [13], where generating up to millions
of interactions is cheap with regards to computation time, energy,
and safety. Fortunately, recent studies have provided frameworks
for learning controllers from surrogate Gaussian process (GP)
models [14] trained on limited amount of data [8]. In the frame-
work of model-based policy optimization, a surrogate model
of the dynamics can be effectively used for learning policies,
which are directly applicable to the real system [15]–[17].
Surrogate models can speed up control design, owing to the
recent advances in algorithms and efficient hardware imple-
mentations [15], [18], [19], and allow for verifying and testing
the controllers for correctness of the solution, smoothness and
consistency of the outputs before deploying the logic on real
machine hardware [15].

Contributions: We describe a framework to train surrogate
models of hydraulic actuators from noisy measurements of actu-
ator state (e.g. position, angle). Specifically, we train a nonlinear
probabilistic model of the actuators using the latest scalable GP
inference methods via maximizing the log marginal likelihood
objective and showcase prediction accuracy against parametric
models (NN and piecewise functions) trained using the mean-
squared-error (MSE) objective. We then demonstrate the use
of these models in training non-linear inverse and feedforward
controllers by querying the GP models. Additionally, our work
provides:
� A sound approach to modelling actuator dynamics and

control using non-uniformly sampled, unfiltered, noisy
measurements without constraining the underlying physi-
cal model to a parametric form.

� Techniques to enhance the data-efficiency and accuracy
of predictions and automatically handling input-delays, by
decomposing the system into two components and using a
dual-GP model architecture for prediction.

� A robust workflow for training NN inverse models by
leveraging a novel monotonicity loss that ensures physical-
plausibility by penalizing negative gradients in the model.

� Fast controller optimization on GPU hardware that takes
place in minutes, by leveraging the latest scalable GP
inference and automatic differentiation [15], [18]–[20].

� Considering hydraulics control to be a safety critical appli-
cation, our approach ensures that the open-loop controllers
and inverse models can be constrained to smoothness and
monotonic behavior, and inspected for these properties
before running on the real machine.

� Results of real experiments on a loader crane for various
control applications as well as benchmarking the per-
formance of the models and controllers across different
actuators with varying sensor resolutions.

The rest of this paper is organized as follows. A review
of related works and challenges are presented in Section II.
Section III offers a detailed description of our proposed method
for dynamics model learning from data, filtering methods and
data collection for validation, followed by techniques to train
inverse models and controllers from the models. Section IV
summarizes the results of our experiments with a real machine,
and Section V concludes the paper.

II. RELATED WORK

The trend towards utilizing machine learning (ML) for com-
plex control applications in the field of heavy-duty machines is
becoming more and more visible in recent years [3], [4], [7],
[12], [13], [21]. Some studies are carried out either entirely in
simulation [12], [13], which can involve learning very complex
tasks from up to millions of steps in simulation, or demonstrate
control experiments on the real machine, where some form of
model-based optimization [11], [15] or learning from demon-
stration [5], [6] is studied. ML is a less well-explored field of
research compared to classical control, and safety considerations
are a key limiting factor in testing new methodologies on heavy
machines.

Recent works highlight potential applications of NNs in
control of heavy-duty machines. In [3], a learned model of a
hydraulic excavator and its inverse have been utilized for preci-
sion tip control. The model is structured into three components,
where different customized units account for input delays and
deadband, and the remaining nonlinear effects are captured by
a large feedforward NN. Tip control is then demonstrated by
model inversion and proportional control. A model-based rein-
forcement learning approach to end-effector position tracking
control was carried out in [11], using a larger NN to model the
dynamics of four actuators on a hydraulic excavator and data
collected with varied-frequency sinusoidal and ramp inputs. A
recurrent NN structure was used in [22] for online tracking and
compensation control applied to hydraulic excavators. Never-
theless, closed-loop control demonstrations obfuscate the inac-
curacies of the surrogate models, and these approaches require
velocity data for training and closed-loop feedback, which may
not be available for all hydraulic joints in a heavy-duty ma-
chine. Implementing filters to explicitly smooth the outputs [22]
might be one solution, yet as we demonstrate in Section IV-A,
low-pass filtering is prone to signal inaccuracies, vibrations,
and noise, and the introduced lag from filtering can negatively
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affect model learning. On the other hand, derivative-free mod-
eling and control is an interesting area to pursue for robotics
applications, as shown in [23] through the use of GPs and
customized kernels.

Since NN models of the dynamics require lots of data to
achieve a good level of performance, some approaches train a
policy using smaller NNs, using less but qualitative, task-specific
expert demonstrations [5]–[7]. Nevertheless, the capacity of the
small models are limited for capturing all nonlinearities in a
machine. In [4], a time-delayed NN is proposed for learning
demonstrations of bucket filling operations for a wheel loader.
The effect of time delay in inputs were concluded to be a sig-
nificant factor and the most relevant inputs were identified after
training by analyzing the NN parameters. However, calculating
sensitivity to inputs in larger fully connected networks may not
be easy. In our approach, we use the autoregressive GP structure
from [24], [25] with automatic relevance determination [14] in
the kernel length scales (denoted Λ in Section III-B) to handle
time delays for each actuator, which are utilized by a high-level
planner in our experiments in Section IV-D.

The mathematically-derived equations of flow that describe
the dynamics of actuators [8], [9], or the piecewise functions that
are characterized by physically meaningful parameters (such as
the maximum input currents within deadband) [1], [2], provide
us with models that contain very few parameters which can be
tuned for a real actuator by nonlinear optimization [1]. One
practical aspect of the piecewise models is that since the function
is non-decreasing by design, the inverse is very straightforward
to obtain [2] for control applications. However, the capacity of
these models are further limited, for instance, a fixed parameter
for actuator deadzone [2], [22] may not be the ideal solution
for accurate control. More importantly, the training objective
for these models uses the same least-squares objectives as NNs,
which does not explicitly account for the uncertainties and noise
in measurements.

Our approach is inspired by the recent works in model learning
and policy optimization using GPs [8], [14], [15], [17], [24].
GP models have been shown to effectively learn from limited
amount of data [16], [17], have very few hyperparameters to
optimize, provide an estimate of uncertainty in the predictions,
and take measurement noise explicitly into account. A study of
autoregressive GPs on a simulation model of hydraulic actuators
has been provided in [8], [24]. However, the applicability of
the models for control was not discussed, it had also remained
an open question whether the method could cope with the
effects of nonuniform and low-resolution measurements from
the real system. The recent algorithmic advancements and effi-
cient hardware-accelerated implementations have significantly
sped up computations for GP inference [18], [19]. A recent
study on GPU-accelerated policy optimization using GPs [15]
highlighted fast controller learning for position tracking control
of a wheel-loader actuator, yet the model was trained only on two
discrete speeds for demonstration. In this work, we put forward a
more detailed analysis on constructing the full dynamic charac-
teristics of hydraulic actuators, including deadband, asymmetry,
saturation, and the ability of GPs in handling the uncertainty in
measurements using real machine data.

III. AUTOMATED DYNAMICS MODELLING FROM DATA

This section develops a framework to train and validate pre-
dictive state-transition models from noisy observations of an
actuator’s state. We consider directly driven proportional spool
valves [9], where an input current u is applied to a solenoid driv-
ing an inner sliding spool, and the resulting spool displacement
delivers a certain rate of flow that puts the actuator in motion. The
spool overlap presents a deadband region [9], where the actua-
tor stays motionless despite current being applied. Real-world
applications of the proposed framework, such as feedforward
control for eliminating deadband and other nonlinearities in the
actuator are presented in Section IV.

A. Data Collection & Filtering

In a purely classical control approach to constructing a model
of actuator response when only state measurements are accessi-
ble, the data is collected by executing passive input currents to
the actuator. The noisy measurements of position are then passed
through a filter to be smoothed and an estimate of the velocity
is obtained in the process. Filters that use present and past data
are causal, which are suitable for online estimation. Filters that
take future measurements into computations are termed acausal
(noncausal), which can only be utilized offline but provide
much better estimation [23]. In particular, we compare two
filters with the predictive model. The chosen causal filter is an
adaptive low-pass filter [26]. Its formulation takes into account
the sampling time intervals and is computationally inexpensive,
making it suitable for use in real-time applications. For the
acausal filter, we use the Savitzky-Golay (SG) filter extended to
non-uniformly sampled data [27]. The SG-filter works by fitting
an nth order polynomial to a window of samples around a point
via least squares. The non-uniform SG-filter is computationally
more expensive than the standard uniformly-sampled SG [28]
but provides a better estimate for our validation analysis with
real data, especially with lower resolution measurements. For
the complete derivation of the filters, refer to [26]–[28].

Filtering data for training predictive models has disadvan-
tages, e.g. the induced lag [26], which increases as the cut-off
frequency is lowered to filter out high frequency noise. In our
application, this lag degrades the prediction accuracy of models
and policy performance. Moreover, the actuation and data col-
lection have to follow steady trends (e.g. ramp or step inputs) for
these filters to achieve consistent estimations. We aim to avoid
these drawbacks by training a predictive model directly on noisy,
unfiltered measurements which can be validated with filtered
ramp experiments. The results are presented and discussed in
Section IV-A.

B. Dual-GP Dynamics Model for Hydraulic Actuators

This section describes our approach to modelling the hy-
draulic actuator dynamics by leveraging Gaussian Processes
(GPs) [14], [24]. The dynamic characteristics of hydraulic ac-
tuators depend on many uncertain factors, and are intrinsically
stochastic and nonlinear. Therefore, instead of constraining the
dynamics with a parametric form [1], we treat the measurements
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directly as noisy observations f̂(u) = f(u) + ε of a nonlinear
function that expresses transitions ẋ = f(u) of actuator state
x on input variables u, then train a GP to model the function
as a collection of random variables f̂(u) ∼ GP(μ, k(ui,uj)).
The distribution of f̂(u) at different inputs are then jointly
Gaussian and defined by a mean μ : Rd → R and covariance
function k : Rd × Rd → R. A widely used covariance function
for robotics applications [17] is the exponentiated quadratic
kernel:

k(ui,uj) = σ2
kexp

[
−1

2
(ui − uj)

TΛ(ui − uj)

]
(1)

where σk adjusts the variance and Λ = {l1, . . ., ld} is a diag-
onal matrix containing length-scales for each dimension d of
inputs. To account for input-to-actuation delays, the models
are trained over a sequence of past training control inputs
uk = {uk−d+1, . . ., uk−1, uk}, an idea that has been used in
autoregressive GP models [8], [24], [25]. After optimization of
parameters, the values of length-scale for each delayed input can
determine the relevance of that input in predictions, automati-
cally emphasizing the most appropriate input for predictions.
We further propose to decouple the dynamics into a cascaded
process of two GPs: GPI - a model of the input currents (u)
to spool displacement (xs), associated with the electromagnetic
(solenoid) and the inner spool dynamics, and GPII - a model
to characterize the hydraulic oil flow and actuator mechanics,
which predicts the rate of change in actuator state (which is pro-
portional to flow rate) from spool position. Doing so enhances
the accuracy of predictions, reduces the dimensionality of in-
ference and complexity of training. Moreover, each component
model can be closely examined after training for insights on
the real system, allowing us to identify certain characteristics
such as delays, saturation values, center points and asymmetry
(refer to [9] for a detailed description of spool characteristics).
To account for non-uniformly sampled data (e.g., measurements
in real experiments), we define the observations as the discrete
rate of change of states yk = Δxk

Δtk
= xk+1−xk

tk+1−tk
. An overview of

sampling from the proposed dual-GP model architecture for
predictions is depicted in blue in Fig. 2.

Prediction at test inputs u∗ can be performed through the
posterior distribution p(f̂(u∗)|U,y), which is Gaussian with
mean and variance defined as:

E
[
f̂(u∗)|U,y

]
= μ(u∗) + kT

Uu∗K̂−1
UU

y (2)

var
[
f̂(u∗)|U,y

]
= k(u∗,u∗)− kT

Uu∗K̂−1
UU

kUu∗ (3)

whereU denotes the dataset of training inputs,K
UU

is the covari-
ance matrix with elements k(ui,uj), K̂UU

= (K
UU

+ σ2
εI),

σ2
ε relates to the noise in observations, and kUu∗ is a vector

of the kernel evaluated over all possible input pairs and test
points. Altogether, the dual-GP model contains the functional
parameters {φI ,φII}, whereφ = [Λ, σk, σε] and the subscripts
I and II are dropped for clarity. These parameters are optimized
through log marginal likelihood maximization using gradient
descent [19], [29]

LG = log p(y|U,φ) ∝ −yT K̂−1
φ,UU

y − log|K̂φ,UU
| (4)

Fig. 2. Overview of the dataflow in training an inverse model of the actuator
dynamics. The approach comprises three parts: Simulating the surrogate dynam-
ics by batch querying the GP models (blue), prediction of corresponding input
commands by the NN (green), backpropagation and NN weights update forcing
monotonicity (orange).

∂LG
∂φ

∝ yT K̂φ,UU

∂K̂−1
φ,UU

∂φ
K̂φ,UU

y − tr

{
K̂φ,UU

∂K̂φ,UU

∂φ

}

(5)

There are a handful of techniques available for efficiently com-
puting the predictive mean and covariances that have drastically
reduced the time and memory complexity of GPs, mainly by
computing decent approximations to the large matrix inverse
terms. These include batched conjugate gradients, efficient
matrix-vector multiplication routines that utilize GPU hardware,
and the Lanczos algorithm [18]. Refer to [19] for details of
the algorithms and implementation in GPyTorch, and [15] for
a detailed study of the speedups in training and inference for
policy optimization on GPU hardware.

C. NN Inverse Model and Control

An inverse model (û = f−1(ẋ) : R → R) for the spool valve
actuator defines a function determining the estimated amount
of input current to the actuator û that when applied to the
system, achieves a desired flow rate ẋ at steady-state. An inverse
model is very useful in that it can be directly applied in many
control problems to infer the commands for trajectory tracking
or compensation of undesired behavior in the system [3], as we
will later demonstrate with our results in Section IV-B and IV-D.
Given that a GP defines a distribution over random variables,
there is no straightforward way to obtain the inverse solution,
neither does a unique inverse exist (this can be inferred from the
characteristic plots shown in Fig. 5 and the naively inverted mean
of the GP in Fig. 6 which is not a one-to-one function). On the
other hand, for application in control it is crucial for the inverse
model to be physically plausible, for instance, there should be
no abnormal discontinuities in the model. An important physical
property that we aim to have in our case in the inverse model is
that a higher input current results in an equal or higher flow rate,
enforcing a non-decreasing constraint on the inverse function
∀ẋ ∈ R : d

dẋf
−1(ẋ) ≥ 0.
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Fig. 3. A standard experiment using ramp inputs on a crane slew actuator ©1 .
Top: actuator state (angle). Middle: estimated, predicted, and measured actuator
velocity. Bottom: actuator input and spool displacement. The predictive model
is trained on raw data, yet the predictions follow closely the smoothed (acausal)
estimates.

Fig. 4. Real experiment with frequently changing step inputs. The inputs be-
fore t = 3 s and after t = 19 s are within the actuation deadband, and saturation
of the output can be seen at the peak. The estimates from filtering are prone to
data fluctuations, and do not provide any advantage for learning the model, while
GP model performs well using only raw measurements.

One possible method to finding a suitable inverse is to subject
the GP modelling to inequality constraints such as monotonic-
ity [30]. This can be achieved, e.g. by imposing a constraint
on function derivatives [31], but is an overly complicated pro-
cess that requires alternations to the maximum log marginal
likelihood objective (4), variational inference, or algorithms
to sample under constraints. These approaches are not well-
explored for control, and enforcing monotonicity on the model
itself still does not provide any guarantees on the plausibility
of the inverse. Therefore, we take a more solid constrained
optimization approach to obtaining the inverse by leveraging fast
GP inference and automatic differentiation with computational
graphs [20]. An overview of the optimization is depicted in
Fig. 2. Let an NN define the inverse model, since our GP
inference method (Section III-B) is fast and scalable [15], we can
continuously sample batches of repeated (normalized) control

values ub ∈ RNb×d, {ubi,k−d+1
= . . . = ubi,k ∈ [−1, 1]}, and

query the GPs in succession to obtain the corresponding esti-
mates of ˆ̇x, the output of the dual-GP model. Then, proceed to
evaluate the commonly used MSE loss (6) for the NN using the
training set {ˆ̇x, ub}:

LMSE(ub, û) =
1

Nb

Nb∑
i=0

(ubi − ûi)
2 (6)

In addition, to ensure that the inverse is a physically plausible,
non-decreasing function we propose an additional loss term,
which we will refer to as the monotonicity loss:

Lmonotonicity(û, ˆ̇x) =
1

Nb

Nb∑
i=0

∣∣∣∣min

(
∂ûi

∂ ˆ̇x
, 0

)∣∣∣∣ (7)

this loss retrieves the gradient of the model with respect to the
inputs ∂û

∂ ˆ̇x
, which are accessible in the computational graph of

Fig. 2 by automatic differentiation, then penalizes the mean
absolute value of negative gradients. The effect of this loss
in training the inverse model is later shown in Section IV-B.
Finally, the NN inverse model is trained by backpropagation
and weight updates to minimize the sum of both losses using
gradient descent [29]. It is worth noting that the inverse model
can also be trained via the traditional velocity-error minimizing
objective: By sampling velocity values, feeding them through
the inverse model and through the GP models to estimate the
achieved velocities. However, such approach requires gradients
to propagate through the GP models, which consumes more time
and memory [15]. Our training workflow in Fig. 2 is designed
to avoid this by isolating NN backpropagation away from the
GP models.

IV. APPLICATION TO REAL-WORLD CONTROL

In this section, we demonstrate how well the surrogate GP
models for each individual hydraulic actuator are constructed
using real measurements (Section IV-A), and how they can be
utilized for training inverse models (Section IV-B) and con-
trol in heavy-duty machines from compensating for nonlinear
actuator dynamics to achieve smooth and symmetric behavior
(Section IV-C), to open-loop trajectory tracking control with the
actuators in multi-joint motions (Section IV-D).

A. GP Predictive Models: Training and Validation

We begin by collecting a training dataset, as detailed in
Section III-A. The control input is the remote controller signal
to the actuators of the machine shown in Fig. 1 over controller
area network (CAN) connections operating above 50 Hz. The
data is downsampled to 10 Hz and z-score normalized [14] to
facilitate GP training. The input to the models comprise up to
5 time-delayed samples. The total time of data collected for
each actuator is approximately 20 minutes, with equally split
training and validation data. Validation data is obtained through
steadily-increasing and decreasing inputs, and the outputs are
smoothed using a SG-filter (acausal) that operates over a window
of 51 samples and fits a polynomial of order 11. A sample of the
ramp-input experiment for validation is exemplified in Fig. 3.
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Fig. 5. Characteristic curves of three optimized surrogate models (GP, NN,
Piecewise Linear) for a real hydraulic actuator ©4 . Gaussian distributions of
outputs corresponding to selected inputs are illustrated on the right. The curve
is non-linear, asymmetric, off-centered, and contains deadband and saturation.
Ramp experiments validate the accuracy of trained models.

This is a case where state measurements are only accurate to
0.1 degrees, hence causal filtering techniques that work in real
time (online), such as the low-pass filter in Fig. 3 cannot yield
a correct estimate of the velocity. The carefully collected and
filtered ramp data (as used in hydraulic systems identification)
provide an estimate of the actuator velocity ground truth, and
are better suited for validation of the models than using part of
the discrete measurements as validation data (as in most ML
workflows). However, a drawback is that the ramp experiments
can be carried out for only a limited range of inputs (in Fig. 3,
a little over 40%) before the actuator state reaches its physical
bounds. As a result, we are only able to validate the models in
the regions within this limit. The training dataset, on the other
hand, includes all arbitrary transitions and is not limited to ramp
inputs. One instance is shown in Fig. 4, where the spool valve
is commanded with step inputs up to 100%. The actuator in
this case is for the prismatic joint in Fig. 1, accurate to 1 mm in
measuring the displacement of the piston rod. However, the noise
in raw measurements varies, and is influenced by vibrations in
the links at higher speeds. Objectively, it is possible to design the
filters to better smooth the data, yet the process would require
cumbersome filter design and tuning based on data, and will
introduce additional lag in the response, which for the purpose
of model training and control is undesirable.

Projecting the end-to-end dataset of training, along with the
predictive distribution of the GPs, we get the characteristic curve
of the spool valve shown in Fig. 5. The curve is well constructed,
though the measurements are sporadic due to sensor noise,
vibrations, transient dynamics of pressure, and other uncertain
factors. We also provide a comparison between our model and
two widely used deterministic models, one having a piecewise
linear structure as in [1], and the other an NN with two hidden
layers of 16 nodes each with ReLU activation. All optimizations
for the GP and parametric models are carried out in PyTorch [20]
using Adam optimizer [29], with the same dataset and learning

Fig. 6. Characteristic curve of the NN inverse model trained on the dual-GP
model for the slew actuator ©1 and the effect of the monotonicity loss on trained
models. The derivatives of functions are illustrated at the top.

TABLE I
PERFORMANCE OF TRAINED MODELS - TRAINING AND VALIDATION

rate (η = 10−2) that has worked best across all models. To
address randomized initializations and training, the model with
the best final loss out of 10 runs is reported for the analysis. The
overall training for each actuator model is complete within only
a few minutes using GPU hardware [15]. The predictions of the
NN and piecewise function are shown in Fig. 5, and detailed
values are compared in Table I. The models are validated via
the MSE loss between the predictions and filtered data from
ramp experiments which are depicted in blue in Fig. 5. As
can be inferred from Table I and Fig. 5, the piecewise linear
approach [1] is oversimplistic and presents the highest MSE loss,
overestimates the deadband, and underestimates the saturation
on the right half plane of the characteristic curve. The NN model
has more capacity to capture the characteristics of deadband,
where more data is available, but underestimates the values at
saturation, and is outperformed by GPs by a factor of over ×7
on the validation set.

Overall, it can be concluded that there are a handful of
properties that render GPs more suitable towards modeling the
spool valves over the parametric models. Firstly, the noise and
uncertainty in measurements are explicitly taken into account via
the log marginal likelihood objective (4), while both parametric
models try to minimize the naive MSE loss that not only leans
over the regions where more data is available, but also treat
the outputs as deterministic points with no regards to noise
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Fig. 7. The characteristic curve of a compensated system. An NN controller is
trained on the surrogate model to make the dynamics follow the designed curve
within dynamical constraints. Performance of the new system is validated by
applying ramp commands to the compensator for actuator ©4 .

or uncertainty. They are also prone to getting stuck in locally
optimal solutions, as the comparison of training losses in Table I
delineates. The GPs are also better at using the neighboring
measurements for more accurate predictions on a point, owing
to the covariance function (1), an extremely helpful property for
constructing the characteristic curve over all admissible controls
from limited data as sufficient measurements are not available at
every input. Lastly, the parametric models shown here perform
relatively well in the case of a sensor with 1 mm accuracy, but
poorly on actuators with low-resolution measurements.

B. Computing Inverse Models

This section follows the method outlined in Section III-C and
Fig. 2 for training an inverse model. The results are shown in
Fig. 6 for an actuator with discrete measurements limited to 0.1
degrees. The effect of the proposed monotonicity loss (7) on the
inverse is demonstrated by comparing it against training using
only the MSE loss (6), which exhibits undesirable high gradient
jumps in the deadband. As explained in Section III-C, our
approach preserves the flexibility of the GP models, the inverse
solution is ensured to remain within the defined plausible set, the
training for each actuator model takes less than a minute [15],
and can be adopted for a variety of different tasks.

C. Compensating for Nonlinear Dynamics

In addition to training inverse models, the surrogate models
can be utilized to train a controller for desired purposes directly.
In this section we will train a compensator to reshape the
dynamic characteristics of the actuator shown in Fig. 5 into a
desired smooth, no deadband, centered and symmetric behavior
shown in Fig. 7. We propose a desired curve outlined in Fig. 7,
by fitting a polynomial to a set of waypoints. For symmetry, the
points are chosen on the right-half plane only and the curve is
mirrored. Using the same structure for NN and the loss objectives

Fig. 8. Open-loop velocity tracking on the real machine following a circular
trajectory using actuators©2 ©4 . The inverse model is able to handle the deadband
and nonlinearities very delicately to follow the desired profile, so that the real
velocity measurements match the model predictions and drift is small. The root-
mean-square-error of end effector position is 6.85cm.

as before, we train a controller that, when commanded with
an input ucmd, maps the command to an input current that will
reshape the output of the dual-GP model (and consequently
the real system) to match the desired output determined by the
polynomial curve. A comparison between the uncompensated
(GP) models and the new, compensated system of NN+GPs
and the corresponding confidence bounds are depicted in Fig. 7,
and the results of the real experiment verify the integrity of the
controller. This compensation has significant impacts and use
cases in assistant functions and operator controlled machines,
as it reduces the burden of adapting to the (unknown) deadband,
and makes the function symmetric. The compensated system
is also less sensitive to the change in inputs around the center,
allowing a broader tolerance where precision control is desired.

D. Multi-Joint Open-Loop Trajectory Tracking

This section presents our final experiment on the effectiveness
of the constructed GP models in control. Given a pre-generated
time-sequence of desired velocities τ = {ẋt0 , ẋt1 , . . ., ẋtf }
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(e.g., from a high-level planner) for two actuators, we passively
execute the corresponding input currents computed by the in-
verse model {ût0 , ût1 , . . ., ûtf } (Section IV-B) and evaluate the
tracking performance of the system. The results are summarized
in Fig. 8.

V. CONCLUSION

System identification and control of hydraulic actuators faces
several challenges when it comes to real machines: Complex
dynamics, noise and uncertainty in measurements, and having
a handful of data to train with, among other complications
that need to be accounted for. To this end, we proposed a
robust framework of machine learning methods to learn accurate
models of actuator dynamics while explicitly accounting for the
uncertainties, and outlined the use of these models in training
physically-plausible inverse models and feedforward controllers
for real-world applications. As demonstrated through detailed
experimental results, the proposed approach is applicable to a
variety of hydraulic actuators and sensor resolutions. Moreover,
the dual-GP architecture outperforms the neural networks and
piecewise models, and enables rapid simulations for training
well-performing neural network controllers in a very short
time.
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